182 PET/CBM Personal Computer Guide

Notice how straightforward the logic is, even though we are still checking for
operator errors. Any entry other than one of the six allowed characters is rejected. If
changing the row or column number puts it out of the allowed range. then program logic
simply asks for new row and column numbers. (The CBM 8000 window and scrolling
functions are not very useful in this example since we want to scroll left and right, as
well as up and down.)

An untidy aspect of the program shown above is the fact that, following an out of
range row number, only a new row is allowed to be entered; this results from the GOTO
100 on lines 210 and 230. Following an out of range column number the GOTO 70 on
line 300 allows new column and row numbers to be entered (since in the main body of
the program, column number entry precedes row number entry). Can you rewrite the
program to get rid of this small untidiness (select whether only the row or column will be
reentered, or if both the row and column will be reentered when either is out of range)?

Another undesirable feature of the display program is the time taken to fill the
array X%. This has nothing to do with the display itself, but in many programs such
delays are likely to occur. An operator may well assume that the computer is not work-
ing properly. Whenever such periods of inactivity are encountered it is a good idea to
display a prominent message telling the operator that the computer is working, and to
please wait. This is easily done. You simply precede the computation statements with an
appropriate PRINT statement. In our case the following PRINT statement could be
used:

15 FRINT "CFPLEASE WAIT WHILE I FILL THE ARRAY WITH DATA"

Our program takes great care to terminate the display on the 39th column of the
display, rather than the 40th and last column. When using a CBM computer with a 40-
column display, it is not wise to run displays out to the 40th column. You will run
afoul of the wrap around logic whereby lines that are more than 40 characters long
automatically continue on the next line. You are best off not tangling with the display
formatting nightmare that can result from carriage returns generated as part of line con-
tinuation interacting with your own formatting carriage returns.

40-Column Screen Wrap Around Logic. The following paragraphs explain how
40-column wrap around logic works.

When the cursor is on any 40-character screen line, the CBM computer assumes
that it is a 39-character line until a character has been displayed in the 40th character
position; then the CBM computer assumes it is in the first half of a 79-character line. If a
character has been displayed in the 40th column of the preceding line (i.e., the cursor
has moved to the next line), then the CBM computer assumes it is in the second half of
a 79-character line.

When a program encounters a carriage return, it executes a carriage return to the
next logical line. When the CBM thinks it is in the first half of a 79-character line (a
character has been displayed at the 40th character position) and it executes a carriage
return, it moves the cursor to the next logical line, which is two display lines below.

If you POKE into the 40th character position of a 40-character display then the
computer does not assume a 79-character line. This can be done using the statement:

POKE 32767 +(L-1)-40,ASCI(CH$)
where:
L is the line number
CHS$ is the POKEd character

If you have a 40-column display, then as an exercise it is worth modifying the

complete table display program so that it does go out to the 40th column. To do this you



Chapter 5: Making the Most of CBM Features 183

must change the TABs on line 30 and line 1010 from 9 to 10; the TAB on line 1050 must
change from 13 to 14, the TAB on line 1130 goes from 2 to 3. Now try running the pro-
gram; the columns of numbers line up, but you have too many carriage returns and they
force the top of the display to scroll off the screen. Now try eliminating the extra carriage
returns and generating the correct display. This is a very difficult programming task.

MATHEMATICAL PROGRAMMING

CBM computers can add, subtract, multiply, and divide with full accuracy using
numbers that have up to nine digits. Numbers with more digits have to be rounded off
to nine digits. Thus 123456789.12 is rounded to 123456789. Although this limit poses
no problem in many applications, business and scientific applications can require more
digits of accuracy. The CBM cannot keep track of dollars and cents (to the nearest cent)
for amounts over $9,999,999.99, for example.

Two programming methods can overcome the CBM computer’s numeric
accuracy limitations. The first method uses numeric strings. The second method uses
multiple integer math, where a large number is separated into smaller segments, and
each segment is handled separately.

ADDITION

Numeric string and multiple integer techniques can both be used to add integer
numbers that have more than nine digits. The augend is the first number in the equa-
tion. The addend is the second number. The addend is added to the augend.

Addition using Numeric Strings
The steps involved are:

1. Input the augend and addend as two positive numeric strings.

2. Right justify the strings.

3. Add the corresponding digits of the strings separately, including carry.
4. Concatenate the answer into a one-string result.

5. Print the answer string.

Let us examine each step in turn:

Step 1: Input the augend and addend as positive numeric strings using an
INPUT statement.

Screen Display Representation of Memory Contents
168 PRINT"*$ADDITICN®##¥" FRINT A$ [1]2[3]4]5(6 7]8]3 011]2[3l4{5]6
28 IMFUT Af.E$ B$ (57 9

Rl

FA¥ADDI TIOH®#¥




184 PET/CBM Personal Computer Guide

AS is the augend and BS$ is the addend. The INPUT statement allows either to
exceed the 9-digit numeric length limit. For simplicity we will allow only positive integer
numbers to be input. Once you are familiar with the basic concepts of the addition pro-
gram, you should experiment and alter the program to accommodate negative and frac-
tional numbers.

Step 2: Right justify the strings. Before performing arithmetic operations, the
numbers should be right-justified, because in BASIC alphabetic and numeric strings are
automatically left-justified. If the contents of numeric strings are added without first
being right-justified, the answer will be incorrect, as shown below:

Left Justified - Incorrect Right Justified - Correct
1234567890123456 1234567890123456
+57943572 + 57943572
7028926090123456 1234565948067028

The following statements right-justify the shorter of the two numeric strings A$
and BS. The shorter string is filled with leading zeros until it equals the length of the
longer string. X is assigned the length of AS. Y is assigned the length of BS:

3@ BLAMKE="

48 $=LEH<A$: r=LENCE$)

S@ IF XY THEM A$=LEFT$CELANKS. v—:)+A¥

E6 IF %< THEM EF=LEFT#(BLAHES. H-71+E$
BLANKS on line 30 is a buffer string that is used to fill the shorter numeric string with
blanks. BLANKS has 16 blank spaces, since we are going to simplify our problem by
imposing a 16-digit limit on the size of numbers.

Statements on lines 50 and 60 use the LEN function to compare X (the length of
A$) to Y (the length of B$), and subtract the length of the smaller string from the length
of the larger string. In our example B$ is shorter than AS$, so the length of B$ is
subtracted from the length of AS.

E@ IF ¥k THEM E$=LEFT#&{EBLANNE @~ +EF
N—————

Length of smaller string subtracted
from length of larger stning

If the length of AS is 16 digits and the length of B$ is eight digits, the difference is
eight digits:

A$ MM2[3[456 6.7 8910[1[2]3[45]6] X =16 XY ﬂg
B$ 5/7i9]4.3.5.712 Yy=8 16-8=8
The number of blanks concatenated onto the front of B3 is the difference between
the two lengths. Since the difference is eight, eight blanks are taken from BLANKS to

fill the shorter string. Blanks are added to the front of the shorter string B$ with the
following statement:

_EFT#¢BLAMKE -V ) +EBF



Chapter 5: Making the Most of CBM Features 185

The procedure is as follows:

BS=LEFT$BLANKS.X-Y) +B$

B$=LEFTS(BLANKS.16-8) +B%

B$=LEFTS(BLANKS.8) +B$

BS=LEFTS(Eue e e[e[v e[ [ [e[v]6[E] .8 +BS

S CIECICICICIEC +EI7R[RE2

8% =(¢[d]w]w]e[¢[6]8]5]7]94[3[5]7]2

As=[12[3a[5[6]7[8[9 012134 ]5]6) B$=u[is]4 ¢t ][5]7[9[4[3[5[7]2]
16 digits 16 digits

Step 3: Add the corresponding digits of the strings. At first glance, you might

assume that A$ and B$ can now be added using the following statement:

CH=A$+BS
This is incorrect. When a plus sign is used with strings they are not added, but are con-
catenated:

C$=A$+8$

cs=[[23[4sle[7[eloo[2[3[4lsl6] + [elelelelelfelvloi7Iof4[35]7]2]

cs=[[2[3R[ele[7[B[elol[2[3[45l6 e [elele]elelulels[ [0 4]3]5]7]2]

We want to add the digits in the strings, not concatenate the strings. To add the
contents of numeric strings, each digit must be extracted separately from the string,
converted into a numeric digit, then added to one digit from the other string. This is
done using the two string functions VAL and MIDS.

16z8 FOR I=LEMCA$> TO 1 STEF-1
1638 A="ALMIDEA$. I.122

165e E=YAL<(MID$(B$.I1.122

1168 HEXT I

A is the digit extracted from AS$. B is the digit extracted from BS. I is a counter
initialized to the length of the INPUT strings (either A$ or B$ may be used). With each
FOR-NEXT loop iteration, the value of  is decremented by 1. As I decrements, it allows
the string contents to be extracted one by one, right to left, using the MID$ function:

1 MID$(BS,1.1)

16 BUYBUBEE57943572
15 BUBBBEEE57943572
14 BUBBBEEE57943572
13 UEVUEEYEE7943572
12 YB¥BYBEE57943672
11 PUUBBYEE57943572
10 PYEBBEEB579435672
9 YUBUBEEEB579435672
PPBEEEEBE5 7943572
PPBEEEEE5 7943572
BUBBBEEE57943572
PUBBBEEE57943672
PEBBEEEE579435672
BYBEEEEB57943672
BB EE57943572
U EBEYE 79435672

- R W, ~ @



186 PET/CBM Personal Computer Gusds

The VAL function converts each extracted string literal into a numeric value:

When | = 16,
B=VALIMID$IBS.16.1))
B=VALIS [dddddddb]7[9[4[3[5[7]2]
B=[42]

When | = 15,

B=VALMIDS$(BS.15.1))

After both numeric string digits have been converted into an integer, they are
added and the sum is returned in C$. Here are the necessary program steps:

leea H=1 Initialize string pointer N.
18146 D=a Initialize carry value.

1828 FOR I=LEMcA%$> TO 1 STEF -1 Intialize decrement counter |

Extract digits separately. Convert
10 non-string nUmeric.

1848 A=A+D:D=a Add tens value from carry (D) to A

1826 A=VALMIDFCAF, 1,122

Extract digits separately. Convert

1856 B=YAL(MIDFCES, 1,150 ot o ok

188 C=A+E Add extracted digits of A$ and B$
178 IF C>=18 THEH D=1 Carry tens value into D if C>=10
1886 IF D=1 AMD I=1 THEN H=2Z

1638 CF=RICGHTF(STRE(COI.NI+CF Link sums into string answer

1160 NEXT 1

Variable D is initialized to zero at line 1010; D is then used as a carry value in lines
1040, 1070, and 1080. During addition, if the value of C is greater than or equal to 10, a
tens value is carried over to the next left position. The tens value carried over is stored in
D:

123%a%'5%s '7*'89012
+ 5 7 9 43572
123 5 1 4 7 32584

If C is greater than or equal to 10, the carry variable D is incremented to 1 at line
1070; otherwise it remains O:
1878 IF Cr=1@ THEM D=1
A
+8
¢ [#15 —=15>=10—D[d]]

ar

B
+8  [g0]

c —=3<10 — D[g0] (no change)

D will be either 0 or 1, but never greater than 1, because the maximum possible
sum of any two single-digit numbers is 18, thus the maximum tens value that can be
carried over is 1.



Chapter 5: Making the Most of CBM Features 187

To prevent losing the carry in D, line 1040 resets the value of A to A + D on the

next loop iteration:

1684@ A=A+D:D=@
If this statement were omitted, the carry would never be carried out, and the value of A
would be incorrect. When D is added to A, D is reset to 0 in preparation for the next
loop iteration.

Step 4: Link the individual sums (C) and convert the total sum into a string.
Just as the augend and addend were entered as strings to avoid the 9-digit length limit
the sums must be converted back into a string to avoid the length limit.

Line 1090 links the individual sums of C and converts the final answer back into
string form.

The STR$(C) function converts C into a string. The RIGHTS$ function extracts
the rightmost N characters from STR$(C). N is set to 1 at line 1000 to indicate that we
want only the rightmost character to be extracted; the leftmost character of C is
unnecessary because it is the sign value (“‘B” if positive and ‘=" if negative) and
would be concatenated between each number of C$ if we did not exclude it.

1668 H=1
N
18E6 C=A+E
<8 - AL+ 8T
1896 CH=RIGHT$(STRECCH  HI+CE
C$=RIGHTS(STRSIC). 1}+C$
C$=RIGHTS$I[d[8]. 1)+C$
c$=[E + C$
Even if C is a two-digit number, only the rightmost digit is concatenated onto C$. The
tens value has already been assigned to D and will be added during the next loop itera-
tion.

N is set to 2 to include the last carry only if D=1 and I=1 (signaling a carry on the
last loop iteration). This is important, because if both conditions are true the loop will
not iterate again to add D’s carry into A in line 1040, thereby losing the last carry value
in D. By setting N to 2 on the last loop iteration, both digits of C are included in C$, and
the last carry over is not lost.

1876 IF C>=16 THEN D=1
clgi2)>=10  D[g]
1886 IF D=1 AHMD I=1 THEN N=2
D[] 1[&#7] N
1698 CH=RIGHTF(STRE(CI MI+CE
C$=RIGHTS$([Z[1[2].2)+C$
cs=[12)+c$
c$=[1]2

The entire FOR-NEXT loop routine at lines 1020 through 1100 does as follows:

1. It extracts individual digits from a numeric string and assigns numeric values
to them (statements 1030, 1050).



188

PET/CBM Personal Computer Guide

2. The digits from both strings are added together one digit at a time (statement
1060) and checked for a carry value (statement 1070). The carry is added to A

in the next column (line 1040).

3. The individual sums are then linked and converted back into a numeric string

(line 1090).

Step 5: Display the answer string. To complete this addition routine, the input
and length test statements are inserted at the beginning of the FOR-NEXT loop (state-
ments 10 to 1010). PRINT and CLEAR statements are added (statements 1110 to

1130). The final program now reads as follows:

18 PRIMT"#s#ADDITITOMS®%" FRINT
2@ INFUT A$.E$

38 BLANK$="

48 X=LEMCA%):Y=LENCE$>

S@ IF X<Y THEN A$=LEFT#{BLANKS.Y-X)+A$
&8 IF Y<¥ THEN E$=LEFT$(BLAMKF.Rx-Y +E¥

1008 N=1

1818 D=@

1628 FOR I=LEMcA%$> TO 1 STEF-1
1636 A=VALMID$(A¥. 1. 12>
1646 A=A+D:D=@

1@sSe B=VAL{MID$(B$.I.12>
1@ C=A+E

1876 IF C>=1@ THEM D=1

1@s@ IF D=1 AND I=1 THEM H=2
1890 CH#=RIGHT$(STR#F(CH,NI+C¥
1188 MEXT I

1116 PRINT :FPRIMT"AMSWER= ":C#¥
1126 C#="":FRINT:GOTO 24
1138 EMND

Clear screen
Input numeric strings

}Righl justify strings

Addition loop

Print C$
Clear C$

Two sample runs of the program give the following output:

*##ADD I TIOM* %4+
712345
?TET3
AMSMER= 123224

ANSHER=

This addition routine overcomes the 9-digit numeric length limit. Try modifying
this program to receive inputs as dollars and cents, and to display results in the same for-

mat.

Multiple Integer Addition

Another way to overcome the 9-digit length limit during addition is to use multi-

ple integer addition.

Multiple integer math reorganizes a large number into smaller segments. Each
segment is handled independently. The individual answers are joined together into

one final answer, as follows:



Chapter 5: Making the Most of CBM Features 189

Input numbers l )(XK):EXXXK —I—l
1 XXX XXXX

High | xxxx h | xxxx Low
X G

Calculation Calculation

Y Y

High answer[ HAHAKK l I XXXX ]Lwanswer

Answer r XXX |

The steps involved in multiple integer addition are as follows:

Input the augend and addend as two positive numeric strings.
Divide the number into two equal high and low parts.

Separately calculate the sums of the high-order and low-order parts.
Concatenate the sums into one answer string.

Display the answer string.

e S A

Step 1: Input the augend and addend as two positive numeric strings:

18 PRIMT"¥*#MULTIFLE IMTEGER ADDITIOH##¥" FRINT
28 INPUT A%, E$

RN
*¥#¥¥MULTIFLE INTEGER ADDITIOH®##

T12E4SETEIAL 22456
FISTIYESTE
AS$ is the augend and B$ is the addend. The numbers are input as numeric strings
because: 1) the numeric length limit is avoided, and 2) string functions can be used to
divide the numbers into smaller segments.

Step 2: Determine the maximum length of numeric input, and the number of
segments into which the numeric input must be divided. For example, if the maximum
length of numeric input is 16 digits, numbers must be divided into two segments, with a
maximum of eight digits per segment.

To keep our sample program simple, the maximum input length is assumed to be
16 digits. Input is divided into high and low segments of eight digits each.

Pooooooocoooooo |
1

8 digits 8 digits

I
]
I
high [rxxxxxxd] | frxxxxxxd tow
:
|
|



190 PET/CBM Personal Computer Guide

First we must determine which input string is longer. The lengths of A$ and B$
are assigned to variables X and Y respectively.
1888 K=LEM<A$) Y=LEMCE$)>
Next, the lengths are compared. If X>Y (length of AS is larger than length of B%)

then variable F, the divider variable, is set to one-half of X. But if X<Y, then F is set to

one-half of Y.
1662 IF 3% THEM F=b/2 GOTO 1866
1684 F=Y 2

Here is another method of assigning a value to F:
1682 F=Y/2:IF W>Y THEN F=x/2

In this example, A$="1234567890123456"" and B$=":57943572." Let us run

this through:
leae K=LENC{A$) Y=LENC(E$)
X =16 ¥=8
1682 IF #3Y THEM F=x-/2:GOTO 1886
16>8 true statement. therefore
F=16/2
F=8
program continues at line 1006

Once the value of F is set, the program continues at line 1006. The statement on
line 1006 looks for a fractional value of F. If F is larger than its integer value, then F is
assigned its integer value, plus 1. This rounds F up to the nearest integer. For example,
if the value of F is 7.5, the statement on line 1006 rounds it up to 8:

1806 IF F>INT¢F» THEM F=INT(F)+1
If 76>7 then F = 7+1
F=8
To obtain the high (H) and low (L) parts of the sum of A$ and B$, use the follow-

ing statements:

1800 X=LENCAS$) : Y=LEN(B$)>

1802 IF X>¥ THEN F=X/2:GOTO 1086

1804 F=v/2

1806 IF F>INTCF> THEN F=INT(F)+1

1818 IF X<=F THEN AH=0:AL=VAL(A$>:GOTO 1840

1828 AH=VAL(LEFT$CAS, X-F)>)

1030 AL=YALCRIGHT$CAS,F>)

1848 IF Y<=F THEN BH=0:BL=VAL(E$):GOTO 1070

1850 BH=VAL(LEFT$(BS$.Y-F>>

1060 BL=YAL(RIGHT$(BS$,.F>>
Statements 1010 and 1040 compare the string lengths with the divider F, which in this
case is 8. If the string is shorter than eight, AH (or BH) is assigned a zero value, leaving
only AL (or BL) equal to AS or BS. If the string is longer than eight, it must be divided
into high and low segments. AH or BH, the high segments, are assigned the value of the

leftmost LEN(X or Y), minus eight digits, at 1020 and 1050.
1820 AH=YAL{LEFT$CAF. X-F 2
AH=VALILEFT$(AS.16-8))
aH=vAL(LEFTS([[2[3[a[5[6[7[8[9[0]1]2[3]4]5]6] .8}
an=vAL([[2[3[a5e[7]8))
AH=[412345678

To obtain AL, the rightmost eight digits are extracted from A$:
1638 AL=VAL(RIGHT$C(A$.Fa>
AL=VALRIGHTS([1]2[3][4]5]6[7[8[e[0[1]2]3]4]5]6] .8))
AL=VALI([Q[0[i[2[3[a]5]6])
AL=[490123456




Chapter 5: Making the Most of CBM Features 191

The same procedure is used to extract BH and BL. Notice that the VAL function
converts the strings into numbers.

Step 3: Once the large strings are divided into segments small enough for the
CBM computer to handle, addition can begin. With multiple integer addition, you add
corresponding groups of numbers. AH and BH are added. AL and BL are added. When
a number is handled as a group of digits and not as a numeric string, the addition of each
number does not have to be done digit by digit as with the numeric string method. The
CBM computer can add numbers, whereas it is unable to add numeric strings.

AH |$12345678 AL [#90123456
+BH |#00000000 +BL |B57943572

CH |#12345678 CL |¥148067028

First, the low segments AL and BL are added using the following statement:
16760 CL$=STRECAL+EL)

The sum of AL and BL is converted into a numeric string when assigned to CLS.
It is not necessary that the sum be in string form, but it is much simpler to test for carry-
over using the LEN function.

Line 1075 truncates the leading blank from the front of CL$S. Remember that
when a number is converted into a string the leading blank is included. We do not want
this leading blank as part of CL$ when we concatenate the high and low segments
together; therefore we truncate it with the MIDS$ function.

Line 1080 tests the length of sum CL$ against the segment length F. If the length
of CLS$ is greater than F, the leftmost digit is carried over and added to the sum CHS$.
(The value of D is equal to either 0 or 1.)

CHS is obtained by adding AH, BH, and the carry D.

1878 CL$=STRECAL+ELY
CL$=STR$([§90123456] + [#57943572))

CL$=STRS([148067028))
cLs=[e[TAE[o[6[7[0[2[8]

1875 CLE=MIDFCCLE. 2, LEMCCLEI—10
cLs=mps([g[1[a[8[of6[7[0[2]g].2.10- 1)
cL$=MID$ (@] [AB[O[E[7]0[2[B].2.9)
cL$=[Ta[B[ofe[7[0[2[8]

la88 IF LEMCCL#33F THEM D=1

LENICLSI=9 .F=8
9>B8—D=1

128 CHE=STRE(AH+EH+D)
CH$=STR$([612345678) + [600000000] + 1)
CH$=STR$([§12345679))

CH$ =[d[2[3[4[E[6[7[3)

LE25 CHE=MIDF CCHE . 2. LEMCCHE -1
CH$=MID$I[gf]2[[4[5[6]7[9].2.10- 1)
CH$=MIDS ([ 2[3[4[EI6]7[9].2.9)
cHs=[TZBLEE[7)




192 PET/CBM Personal Computer Guide

Step 4: Next we concatenate the two sums into one answer by linking CHS$ to the
front of CL$. The preceding space and carry are truncated from CLS$ by selecting the
rightmost eight digits from that string.

1168 C$=CHE+RIGHTF(CLE.F2
c$=CH$[Z[2BAELE7[Y) + RIGHTSICLS[E[T4[E[0[6[7I02[8].8)
cs=[N[ZEAlE6[7[9] + [FBPEFZE

cs=[[1]2]3]4]5]6]7]9|4]8]0[6]7]0}2[8]

Step 5: Print the answer C§.
1116 PRINT :PRINT"ANSWER=";C$ FPRINT

The program is now complete. This Multiple Integer Addition program accepts
two positive integer numbers that can be up to 16 digits long. The numbers are
divided into high and low segments of eight digits each. The high and low segments
are added and the two sums are concatenated into a single string answer with a max-
imum length of 17 digits. This Multiple Integer Addition program allows you eight more
digits than the CBM computer’s maximum.

Below is the listing of the complete program with a sample run.

18 PRINT"D##&MULTIPLE INTEGER ADDITITOMN##K#" FRINT
20 INFPUT A$.E$

1888 X=LENCA$) ' Y=LENCE$)

1892 . IF X>¥Y THEN F=X/2:G0TO 1@8e

1884 F=Y/2

1806 IF F>INT(F> THEN F=INT(F>+1

1918 IF X<=F THEN AH=@: AL=VALC(A$> GOTO 1@4@
1620 AH=VALCLEFT$(A$. ¥-F>)

1838 AL=VALC(RIGHT$(A$.F2>

1648 IF Y<{=F THEN EH=8:BL=VAL(B$>: GOTO 1878
1956 BH=VALCLEFT$(B$.Y-F>>

1860 BL=VAL(RIGHT$(E$.F>>

1878 CL$=STR$CAL+EL>

1875 CL$=MIDFCCLF, 2, LENCCLEI-1D

1086 IF LENCCL$)>F THEN D=1

1638 CH#=STR$(AH+BH+D>

1895 CH$#=MID${CH$,2,LENC(CH$>~-12>

1180 C#=CH$+CL#

1116 PRINT :PRINT"ANSWER=";C$: FRINT

1120 AH=0 AL=6:EH=0 EL=@'D=@:CH$="":CL$="":C$="":GOTO 20
1138 END

#MRMULTIPLE INTEGER ADDITION¥HoK

71234567890123456
7737943572

ANSWER= 12345679548067028

Try modifying this program to receive inputs and display results as dollars and
cents.

SUBTRACTION

As with addition, you can subtract numbers with more than nine digits by using
numeric strings, or by using multiple integer math.
Subtraction using Numeric Strings

This subtraction program contains many sections of the ‘‘Addition using Numeric
Strings’’ program. The steps involved are as follows:



Chapter 5: Making the Most of CBM Features 193

Input the minuend and subtrahend as two positive numeric strings.

Right justify the strings.

Determine the larger numeric string.

Subtract corresponding digits of the strings separately, with borrowed carries.
Concatenate the answer into a one-string result.

Eliminate leading zeros in the answer string.

Print the answer string.

O L b =

Step 1: The first step is to input the minuend and subtrahend as two positive
numeric strings using an INPUT statement:

18 FRINT"##%SUBTRACTION##¥" - FRINT
2@ INPUT A$.,EB$

RUN
*HRSUBTRACT I Ok

7123456785612 as[i[2[3]a[s6[7[8[9[0[1]2]
TISTI43572 Bs[B[7[914[3[517]2]

AS is the minuend (the first or top number entered, from which another number is
subtracted). BS is the subtrahend (the number subtracted from the minuend).

Step 2: Align the minuend and subtrahend by right-justifying both numeric
strings. This is the same as was presented in step 2 of the ‘* Addition using Numeric
Strings”’ program.

2@ BLAMK$=" "
4@ W=LEMCA$)  Y=LEMCE$)

S@ IF #<Y THEN A$=LEFT#C{BLANKS.Y-:)+A$
€@ IF ¥<¥ THEM B$=LEFT#(BLAMKE,X—Y)+E$

Step 3: For subtraction, we must determine which numeric string has a larger
value. Although the input strings may be equal in length, their values can be quite
different.

The values of A$ and BS are compared using the VAL function in statements 65
and 70:

&5 IF YALCAF>=YALCEF> THEW C#F="g": GOTO 1156
e IF YALCAFIZVALCESY GOTO 1066

We are going to subtract BS from AS.

If AS is larger than BS, we have a simple subtraction problem, and the program
drops to line 1000. If BS is larger than AS$, we are subtracting a larger number from a
smaller number, the program prepares for a negative answer.

If the subtrahend is larger than the minuend (BS is larger than A$), the answer
will be negative. To subtract two numbers that yield a negative answer, we switch the
contents of A$ and BS$ so that the value of A$ is larger than BS. Subtract B$ from AS,
and the difference is C$. To make C$ negative, a negative sign, ‘‘—", is concatenated
onto the front of C$: C§=*—""+C§.

Let us subtract 5 from 3, for example. This presents a subtraction problem where
VAL(B$)>VAL(AS), or the subtrahend is larger than the minuend.



194 PET/CBM Personal Computer Guide

A$
BS
Switch A% and B$
A$E] B$[3] — AsfE Bs3[3
Subtract: VALIAS)-VALIBSI=C$
A$[E - B$[3] — c3[2]
Convert to negative
C$="-"+C$%
R oL — C$
Answer:
c$
The variables are switched at line 80.
20 HE=A%$ A$=B$ E$=x%

Program Statement Memory
X$ AS BS

. 0 3 5

XK$=AS% a3 3 b
A$=B$ 3 6 b
B$=X$ 3 5 3

X$ acts as a storage string. Without X8, the original contents of A$ would be writ-
ten over and the contents of B$ would be written back into itself:

Program Statement  Memory

as B

' 3 5
A3=B$ 5 5 Incorrect
B$=A% B 5

Later in the program we will need to know if the variables have been switched. We
therefore set a marker to signal that AS and B$ have been switched. Use variable S for
this: S remains 0 if the variables have not been switched. If the variables are switched,
set S=1. Line 90 sets S=1 if the values of A$ and B$ have been switched.

| z=1

Remember that after the strings are properly switched, a value of 1 is assigned to S
to signal that the numbers have been switched and a negative answer is needed. The
negative answer is obtained by concatenating a negative sign to the front of the answer
before it is printed. This occurs at statement 1140.

1140 IF 5=1 THEN C#="—-"+C%

Step 4: Whether the final answer is negative or positive, the value of AS is now
larger than B$. We can now perform simple subtraction at lines 1000 and 1080. The
routine is taken directly from lines 1020 to 1100, step 3 of the ‘“ Addition using Numeric
Strings’’ program, because the digits are extracted from the strings in the same manner.
However, at line 1050, the carry variable D is now used as a ‘‘borrow’’ variable. If
(A —B)<0, then a tens digit must be borrowed from the adjacent left column, increasing
the value of A by 10. D is set to —1 because a *‘1”’ is being borrowed, thereby decreas-
ing the value of the adjacent left column. The result is C:

1806 REM##SUETRACTION ROUTIME##
1818 FOR I=LENC¢A$> TO 1 STEF-1
1828 A=YALCMIDE(A$, 1.1

1930 A=A+D D=0

1848 E=VALCMIDSCES, 1,100

1856 IF (A-E»<@ THEM D=—1 A=A+1@
1868 C=A-B



Chapter 5: Making the Most of CBM Features 195

+10

A 12 3 T g7 8 89"? 12
-B ¢ @ ¢ g 5 7 9 4 3 5 7 2
c 1 2 3 3 9 8 8 4 5 4 4 0
Step 5: Concatenate the answer into a one-string result. This function is taken
directly from line 1090 of the ** Addition using Numeric Strings’* program, except that N
is not used since there will never be a final carry. In our subtraction program, concatena-
tion of the individual answers into one result occurs at line 1070.
LG70 CE=RIGHTHCSTRICC . 1o+0F
Step 6: Subtraction can generate leading zeros in the answer. We eliminate these
leading zeros before printing the answer. The FOR-NEXT loop in lines 1090 to 1120
checks and eliminates all leading zeros, using the VAL function and variable L as a
counter.

1ase FOR I=t TO LEMCE>
1188 IF WALCMIDECCE. I.120=6 THEM L=L+1
1118 IF WALCLEFTH(CS$, 133<3@ THEM I=LENCC#>
1126 HEXT I
The FOR-NEXT loop, which iterates from 1 to the length of the answer C$,
searches for leading zeros or blanks by extracting each digit from C$ and comparing it to
zero. It compares digits from left to right. If it identifies a zero or blank, counter variable
L is incremented by 1 (statement 1100). As soon as the first non-zero or non-blank
character is encountered, loop counter L is set to the length of the string so the program
may drop out of the loop immediately.
Once we have determined the number of leading zeros in the answer, we separate
the leading zeros from the remainder of the answer C$. At line 1130, the RIGHTS func-
tion takes the LEN(C$) —L rightmost digits and stores them in the answer variable C$.

c$ =[o[o[[2[3[6[7] LENICS) =7
| MID$(C$.1.1)
1 0012357 =0 L=1
2 0012357 =0 L=2
3 0012357 < >0 | =
| =

LEN(CS)
7

7 droo out of loop

1138 CH=RIGHT$(CE, LEMCCFI-LD
C$=RIGHTS (DOMI2[BE[7).7 -2)
C$=RIGHTS ([0[0[1[2[3[E[7].5)
cs= 2B
Step 7: Print the answer string C8$. But before we print C8, we check to see if the
answer is to be negative by testing variable S at line 1140. If S=1, that means that origi-
nally A$<B$, and the final answer is to be negative, so a negative sign is added to CS. If
S=0, the answer is positive, so nothing is added. Line 1150 prints C$:
1148 IF S=1 THEMN C#="-"+C%
1158 PRINT FRIMT"AMSWER=";C$ FRINT
The last lines, 1160 through 1180, clear all strings and variables to zero or null,

and return the program to the beginning for the next input numbers. The total program
is listed below.

L& FRINT"J#$SUBTRACT IOHE®$" FRIMT Clear screen

S8 IMPUT A$.EF Input numenc strings

8 BLAHKE=" "1

48 H=LEMCA$:r Y=LEMCE$) Right justify strings (from|lines
D@ IF

THEM Af=LEFT# ELAMEE.¥-Xi+A% [ 20-60 of the addition program)
S8 IF Y<¥ THEM B$=LEFT$(EBELAMKF.H-Y1+E$



196 PET/CBM Personal Computer Guide

&5 IF YALCAF )=VALCE$» THEW CF="@" GOTO 1158

TEOIF WALCAF I S=VWALCEE) GOTO 1068

(F=AF¥ AF=BF BF=HF If A$ <B$, switch strings
1

ARE REM$$ZUBETRACTION ROUTIME##

1@18 FOR I=LEMHCA$) TO 1 STERP-1

Laza A=YALMIDECAF. T, 100

| 838 A=A+D0 D=@ Subtraction loop (based on
1648 BE=YALMIDECES, I, 103 lines 1020-1100 of the addition
lasa IF «A=-E><@ THEW D=-1 A=A+18 programl

: CETRECC), 10+0#
Laza MEXT 1
1@3@ FOR I=1 TO LEMCCEX

1188 IF VYALCMIDEFC#F.I1.120=0 THEM L=L+1 } Truncate leading zeros
1116 IF YALCLEFT#(CSE, 13)3<>@ THEMN I=LEN(Cs)»J and blanks

L1128 HEXT I

1136 C$=RIGHT#ICH, LEHCCEF I -LD

L1468 IF S=1 THEMN C#="-"+C%

1138 PRINT FRIMT"AMSWER=",C$ FRINT Print answer

11€@ CF="" AF="" E="" ¥
L1ES A=0 B=@ C=0 D=0 S=0 X=6 Y=@ } Clear sirings and variables
L17a SO0T02E

L1568 EHWD

#¥RSUETRACT I ONksx

7123456789612

7757943572

AHSWER= 123398545440

The string subtraction program illustrated above has one problem: it generates a
zero result if the subtrahend and minuend have the same number of digits, and in addi-
tion are identical in their nine most significant digits. For example, try subtracting
123456789000 from 123456789012. The answer is reported inaccurately as 0. This error
results from the statements on line 65. The VAL function computes a 9-digit value for
strings AS and BS. If these two numeric strings are identical in their nine most signifi-
cant digits, then the equivalence test on line 65 will be true whatever values the two
numeric strings may have in lower significant digits. Can you correct this problem by
separately testing the upper and lower halves of the numeric strings?

Multiple Integer Subtraction

Recall from the previous discussion of multiple integer addition that the multiple
integer method divides a large number into smaller segments, calculates the segments
separately, and joins the answers into one string. This method evades the 9-digit length

limit.
Multiple Integer Subtraction has these steps:
Input the minuend and subtrahend as two positive numeric strings.
Determine which string has the larger value.
Divide the numbers into high and low parts.
Calculate the difference for the low-order and high-order halves.
Concatenate the differences into a one-string answer.
Truncate leading zeros.
Print the answer string.

oo al A - 8 o

Step 1: Input the minuend and the subtrahend as two positive numeric strings:



Chapter 5: Making the Most of CBM Features 197

1@ PRINT"D###%MULTIFLE INTEGER SUBTRACTION##%":FRINT
28 INPUT FA$.,EB$

RUN

*¥¥MULTIPLE INTEGER SUBTRACT IOKMok%

7123456785012
FPS7R43572
AS$, the minuend, and BS, the subtrahend, are entered as strings to avoid the 9-
digit length limit.
Like multiple integer addition, A$ and B$ are divided into smaller segments. The
maximum input length is arbitrarily set at 16 digits, so that we can divide the largest
possible string into equal segments of eight digits each.

Step 2: Determine which input string has the larger value. If A$ is equal to B$
then the program drops down to line 1190 to print a zero answer. If B$ is larger than A$
the difference is negative and extra steps are needed.

If the answer is to be negative, the contents of the two strings are switched to put
the larger value in A$ and the smaller value in BS. They are then subtracted, and a nega-
tive sign (‘*“—"") is concatenated onto the front of the difference (C$) as was demon-
strated in line 70 of ‘‘Numeric String Subtraction.”” Line 30 is used here to direct the
program past the switching routine if switching is not needed.

26 IF VALCAFISYALCEF) THEN 1696
46 ME=A$:AF=E$: BEF=N§
S@ &=1

If the value of BS is larger than the value of A$, the contents of A$ and B$ are
switched at lines 40 to 50. This ensures that the smaller number is subtracted from the
larger one. A marker is set to indicate that the variables have been switched.

For a detailed explanation of this routine, refer to step 3 of ‘‘Numeric String
Subtraction.”

Step 3: Divide A$ and BS into two smaller segments, high and low.

1066 X=LENC(A$> : Y=LENCB$>

1002 IF X>Y THEN F=X/2:GOTO 1006

lee4 F=vY-/2

1866 IF FZINTCF> THEMN F=INT(F>+1

1@1@ IF X<{=F THEN AH=8:AL=YAL<{A%):GOTO 1648
1820 AH=VALCLEFT$<{A$, X-F>>

1830 AL=VAL(RIGHT*{A%¥.F>>

1@4@ IF Y<=F THEN EH=@:BL=VAL(E$):GOTO 1&ve
1650 BH=VALCLEFT${B$,Y-F>>

1868 BL=VALC(RIGHT$<(B$.F>

Statements on lines 1010 and 1040 compare the string lengths with the divider
point F. F is determined at lines 1002 and 1006. These lines are identical to lines 1002
and 1006 of the *‘Multiple Integer Addition™ program. If the string is shorter than F,
AH (or BH) is assigned a zero value, leaving AL (or BL) with the entire string as its
value. If the string is longer than F it must be divided into high and low segments. AH is
assigned the leftmost LEN(AH), minus F digits.

A$ ([23[fs[6[7[8[o0l 2]
BS
AH[#123458] AL[§789012
BH [ddgEy57 BL [§943572)



198 PET/CBM Personal Computer Guide

Lines 1000 through 1060 are also similar to lines 1000 through 1060 of the
“Multiple Integer Addition”’ program, which divides A$ and B$ into AH, AL, BH, and
BL. Refer to step 2 of ““Multiple Integer Addition’’ for further explanation.

Step 4: Calculate differences for the high-order and low-order segments. BL is
subtracted from AL, and BH is subtracted from AH:

AH[§123456) AL[#789012
-BH[6BEEE5 7 -BL[F943572

Before the segments are subtracted, the minuend and subtrahend must be com-
pared. If the value of BL is larger than AL the difference is negative. This creates
problems because a negative CL cannot be concatenated onto CH:

CH|Bxxxxxx CL |- xxxxxx|= Citﬁxxxxxx—xxxxxx Incorrect

Therefore, we must borrow from AH to increase the value of AL so that the difference
will be positive. Lines 1070 to 1090 borrow from AH and increase AL before BL is
subtracted from AL:

187@ IF AL>=EL THEN 1186

1650 AL=AL+161F

1898 AH=AH-1

If AL is larger than BL we bypass 1080 and 1090 and jump directly to the subtrac-

tion. But if BL is larger than AL we must borrow a one million value from AH to
increase the value of AL:

-1 +1000000
A el AT
BH ] BL
CHomend L

A ten is added to the leftmost digit of AL. The easiest way to add the ten in the
correct position is to raise ten to the Fth power.
AL=AL+101F

In our sample program, AL is smaller than BL, as tested in line 1070.
AL[£789012] <BL[#943572]

Therefore we must borrow 1000000 (10{F=1016=1000000) from AH to
increase the value of AL:

1886 AL=AL+161F

AL=AL+1016
AL=AL+1000000
AL=[789012] + 1000000
AL=
After AL is been increased, AH must be decremented by 1, since we borrowed
from it.
1E98 AH=AH-1
AH=[gT23456] -
An=[T23059)
Once AH, AL, BH, and BL have been set up properly, segments are subtracted.

CLS3 is the difference between AL and BL, and CHS is the difference between AH and
BH.



Chapter 5: Making the Most of CBM Features 199

Statements on lines 1100 through 1102 compute CLS$:
1188 CL¥=STRECINTCAL-EL )2
CL$=STR$(41789012-¢943572)
CL$=STR$(4845340)
CL$=¥345540
Using the MIDS$ function at line 1101, the leftmost character (a blank representing a
positive sign value) is truncated:
1161 CL#F=MIDS$<CLE, 2. LENCOLEI -1
cL$=MDS ([A[B[4[5[4[2[0] 2.6!
CLe= [8]4[6[4]4]0]

At 1102, if the length of CLS is shorter than F, zeros from ZERO$ are concate-
nated onto the front of CL$. An assignment statement assigns a string of 0s to variable
ZEROS on line 15. In this case, the length of CL$ is equal to F, therefore no leading
zeros are needed.

1S ZEROF="00000EG6Ra08E06E"
1182 CL$¥=LEFT$(ZEROF, F-LEMCCLE ) 0 +CLF
CL$=LEFT$ (ZERO$.6—6)+CL$
CL$=LEFT$ (ZEROS.0+CL$
At line 1110, CHS is assigned the string integer value of AH—BH:
L1168 CHE=STR$C TNTCAH-EH) »
CH$=STR$¢123455-457)
CH$=STR$(#123398)
CH$=[¢[1[2B3[3[E]
Using the MIDS$ function, the leftmost blank character is truncated:
1111 CH#=MIDFCCHE, 2, LEMCCHS =12
cHs=mins([8[[2[3[3[9[g.2.6)
cHs=[[2[3[3[9[E]
The subtraction routine looks like this:
Le7a IF AL»>=BL GOTO 1186

789012 >=043572
Program continues at next line

False statement

Laza AL=AL+181F
AL=789012+1000000
AL=1789012

LE38 AH=AH-1
AH=123456-1
AHE123455

1188 CLE=STRFCINTCAL-BL D >
CL$=STR$(#1789012-%943572)
CL$=STR$(4845540)
cLs=[Blas[s[a[0]

1181 CLE=MID$CCLE, 2. LEMCCLER -1
cL$=miDs([¥[8[4[5[5]a[0].2.7- 1)
CLS=MID$|[ZBa[5[5]4][0].2.6)
cLs=[B4[s[E[a]0]



200 PET/CBM Personal Computer Guide

1162 CL$=LEFT$(ZERO$. F-LEMCCL$» 3 +CLF
CL$=LEFT$(ZEROS.6—6)+CLS
CL$=LEFT$(ZEROS.0)+[B[4[5[5]4[0]
cLs=[B[E[E[A0)
L1118 CHE=STRECIMNT CAH=EH)»
CH$=STR$(¢123455~57)
CH$=STR$(¥123398)
cHs=[g[1[2[3[3[9]8]
1111 CH#F=MIDFCCHE. 2. LEHCCHE =10
cH$=MIDSI[B[1[2[3[3[e[8]. 2.7 1)
cH$=MID$I[2[1[Z[3]3]3]8].2.6)
cHs=[12[33[3[8]
Step 5: Concatenate the answer strings, CH$ and CLS, together by numeric
string concatenation. They are concatenated in statement 1120:
1128 CE=CHF+CLF
c$=cH$[__ |+ cLs[_]
=)
Only the rightmost “‘F’* numbers from CL$ are concatenated onto CH$ to avoid
concatenating any leading blanks in CL$ (see the ‘‘Subtraction using Numeric Strings”’
section for further discussion).

Step 6: Truncate leading zeros in C$ before C$ is printed. Leading zeros are
subtracted in the same way for Multiple Integer Subtraction as for Numeric String
Subtraction (see step 5 of “‘Subtraction using Numeric Strings™). Lines 1130 through
1170 truncate leading zeros just prior to printing C$:

113 FOR I=1 TO LEMCCED
1148 IF YALCMID$CCE. 1. 100=8 THEM L=L+1
1156 IF VYALCLEFT$(CE, 123<>@ THEN I=LEM<CHE)

L1668 MEXT 1
1178 CH=RIGHT$CCE, LENCCSI-LD
1136 IF 5=1 THEN C$="-"+C$

If A$ and B$ had been switched, S would have been set to 1, signaling a negative
answer, and thus a negative sign would be concatenated onto the front of C$ at 1180.

Step 7: Print the answer and clear out variable strings before allowing another

problem to be input.

1138 FRINT FRIMT"AMSWER= ".C$ FPRINT

1268 AF="" EBf="" CE="":CHE="" CL$=""

1265 AH=@ AL=8 EH=0 BL=0 F=0 S=a x=@ y=9

1216 GOTO 26

1228 EHD
The finished program appears as follows:

16 PRIMT" M##MULTIFLE INTEGER SUBTRACTIOM###" FRIMT
15 ZERO#="0ooonaanaoacaaaa"

28 INFUT A%.E$

25 IF WYALCA$ =YAL(B$» THEW C#="8":G0TO 1136

@ IF YALCA$:>YALCES) GOTO 1608

468 X¥=A% AF=EF BF=H$

Sg S=1

1686 H=LEH(A%) ‘Y=LEM(E#$)

1@@2 IF x»Y THEH F=x/2 GOTO 1egs

laag F=Ys2



Chapter 5: Making the Most of CBM Features 201

IF FHIMTOF D THEM F=IMTOFa+1
=F THEHM AH=a AL=%ALCAF) GOTO 1648

AL =FL R TGHT$ g F o
IF wo=F THEM E=@ EL=YAL E$: GOTO 1678
8 EH=WALCLEFTHCE$. v—F 7
CRIGHTHCES. Foo

F=RL GOTO 11ae
AL=AL+181F
FH=FH~1
CLE=STRECIHTCAL~EL 2 5
s AIDECCLE, 2. LEHOCLE -1 2

CLE
B CLE=LEFTFCZERDE. F-LEM CLE 0 +0LE
CHE=ZTREC INT CAM=EHH o
CHE=MIDECHE . 2. LEHCCHE ~1 &

CFE=CHE+CLE

FoR I=1 TG LEHfffW

IF WAL CMIDE if T.1ra=@ THEH L=l+1
IF A THEM I=sLENCCE:
HE -

CE=RIGHT® I 0F LEMICEN-L

IF Z=1 THEMW C#="-

FRIMT FRIMT A COFE OPRIWT
F¥="" Ef="" " CHE= ILI“””
FH=E AL =0 BH=( . FEE Y=
GOTO 28

EHI

$$$MULTIFLE IMTEGER SUETREACT IO

AHSWER= 33333387aS4221a%

You now know two methods of subtraction. The first method used numeric
strings. The second uses multiple integer math. By comparing their outputs, you can see
that both methods work equally well at getting around the 9-digit length limit.

MULTIPLICATION

A 9-digit length limit may be easily exceeded by multiplication because a product
may be very large, even when the multiplier and multiplicand are smali. This numeric
length limit prohibits products longer than nine digits from being displayed without
exponential notation. You can get around this limitation by writing a program that dis-
plays products with more than nine digits of precision. Displaying products exceeding
nine digits without exponential notation is most easily done using Multiple Integer
Multiplication. The following program and discussion will enable you to display pro-
ducts up to 16 digits in length without exponential notation.



202 PET/CBM Personal Computer Guide

Multiple Integer Multiplication

Using virtually the same steps as Multiple Integer Addition and Subtraction,
Multiple Integer Multiplication separates the multiplicand and multiplier into smaller
segments, multiplies all segments, and adds the multiple products together into one
final product, which can have from one to 16 digits.

The steps for Multiple Integer Multiplication are as follows:

1. Input the multiplicand and the multiplier as two positive numeric strings.
2. Divide the strings into high and low segments.

3. Multiply the corresponding segments.
4

Add the segment products to create one product string. Truncate any leading
Zeros.

5. Print the product string.

Step 1: Input the multiplicand and the multiplier as two positive numeric
strings, where AS$ is the multiplicand and B$ is the multiplier. As with the other math
programs, the numbers are input as strings to avoid the 9-digit length limit.

This program limits the length of the product to 16 digits. Since the maximum
product length equals the sum of the lengths of the multiplicand and multiplier, the sum
of the lengths of the input numbers cannot exceed 16. Changing the program to accept larger
numbers requires several alterations which will not be discussed; you should be able to
make such changes yourself. For this program:

llength of A$)+(length of B8l < 16

Examples 12 + 4 <16
2 4 3F L1186
8 + B <16

The example program will multiply two input numbers with equal lengths of eight
digits: 99999999 and 99999999, to give us a 16-digit product.

99999899— 8 digits
- x99999999— + B digits
9999999800000001 — 16 digits

Input the multiplier and multiplicand as two positive numeric strings, A$ and BS:

18 FPRIMT ""##MULTIFLE INTEGER MULTIFLICATIOM###":FRINT
28 INFUT A%$.E$

RUN

##¥#MULTIFLE INTEGER MULTIFLICATIOM##%

739393333

?TH9993933

Step 2: Separate both input strings into two segments: high (H) for the leftmost
digits and low (L) for the rightmost digits. The dividing point, variable F, specifies
where to divide A$ and B$ into segments. The value of F is set at lines 1002 and 1006
(for explanation refer to ‘‘Multiple Integer Addition”’).

1088 X=LEN<A%) : Y=LEMN(E#$>

X=8 v=8
1802 IF #>Y THENM F=¢/2:60TO 1088
1884 F=Yv/2

F=8/2

F=4

1886 IF FZINTC(F2THEMN F=INT(F>+1



Chapter 5: Making the Most of CBM Features 203

Once F is set, the program divides the numbers into high and low segments. This
routine was presented in the ‘‘Multiple Integer Addition’’ program. Lines 1010 through
1060 divide the two strings into high and low segments.

1@1@ IF ¥<=F THEM AH=8:AL=YAL{A$>:GOTO 1848
1620 AH=YALC(LEFT$C(A$. X-F> 2

1838 AL=VAL(RIGHT$(A$.F1>

184@ IF ¥Y<=F THEN BH=8:BL=VAL(B$):GOTO 1670
185@ EBH=YALC(LEFT$(B$,Y-F>

1860 EL=VALC(RIGHT$(E$.F)>

The routine above divides A$ into AH and AL (four digits) and B$ into BH and
BL (four digits):

As[g[o[g[s[9[9]9[9 B3[9[9[e[9]9[9ls]9]

AH[s[olofe]  AL[gfs[9ls) eH[a9[als]  BLg[9lels]

Step 3: Multiply AH, AL, BH, and BL into four product strings: P18, P2§, P38,
and P48$. The rules of algebraic multiplication multiply each variable as if it were a single
number. A$ and B$ are multiplied as follows:

& A
<5 [

Think of A$ and B$ as two sets of 4-digit numbers (H and L) joined in the middle, and
not as eight individual digits: A$ is not eight 9s, but two sets of four 9s each. Thus AL
and BL are multiplied as:

(8] [9999

Multiplying AS$ and BS is a four-step process. To begin, multiply BL by AL:

and then multiply BL by AH:
Next, move over to BH and multiply BH by

and finally multiply BH by AH:

Here is the four-step process:

BH (Al BH, [AD BH _[AY
«[BH] [BL] xBHl T[BU x[eH [BU

[PFs | [P
[p2s | [ P28 | [ _P2s_ ]
[pas | [ Pas |

1 2 3 4



204 PET/CBM Personal Computer Guide

Let’s look step by step at how the multiplication works, using the values of AH,
AL, BH, and BL from our example:

AH AL #9999
B8H (49999 BL (#9999
The first multiplication is BL times AL:
%9999
- BH] [49999
89991
89991

89991
89991

99980001
The second multiplication is BL times AH, as shown in the diagram below:
AH 9999\ AL
- [BH] 8i[9999

99880001
999800010000

Notice that P2 is not directly beneath P1, but four spaces to the left (recall the
rules for lining up the products of 2-digit multiplication problems). To continue in the
same manner, the third multiplication should be as follows:

_AH /Ag,9999
5998~ [BL] -
999800010000
The fourth and final multiplication should be as follows:
AH[9999 >
BH

9998000100000000

Remember that only the values of the four segments are multiplied; this means
that the actual multiplication done by AL X BH, etc. yields the same number,
99980001, for all four products. In the program the products are aligned by converting
the products into strings and concatenating the necessary number of zeros onto the
end of the strings. This aligns the strings correctly. Statements on lines 1070 through
1100 perform this alignment:

1a7@ P1E=STR$CRL¥ALD

1080 PZ$=STR$(BL¥AH)+F§
1698 PI$=STR$C(BHRALI+F$
1106 P4$=STRECBHMARHO +F$+F§

Without alignment the answers would be computed incorrectly as follows:

e
P2 [999800017 Incorrect
P3 [99980001]
v [G5380007]

1



Chapter 5: Making the Most of CBM Features 205

instead of:
[99980001] 0000
[99980001} 0000 Correct
00000000
1

The number of zeros to be concatenated onto the end of the product strings is
assigned to F$. F$ contains F zeros. F equals the number of digits in each half of the
multiplier and multiplicand.

F$=LEFT$(ZEROS.4)

= flc[ofofojolofofolofe]

F$="0000"

When P13, P2$, P3$, and P4$ are computed (lines 1070 through 1100), the correct
number of zeros are simultaneously concatenated to the end of the string to align the
products correctly. The products are now aligned and ready to be added:

RCIE EE El RS IEEIEE]
~ BH [B[9[9[g[e] BL [¥]9]9[9]9]
39980001 P1
999800010000] P2
939800010000] P3
9998000100000000] P4
e~
F$ F$

At the end of step 3, the program looks like this:

Z8 INFUT A%.E$ input values for A$. B$

20 IF YALCA$)=@ OF YALCE$ =6 THEH muliphcard o
Cx="@" GOTD 113@ } multiplier =0 then

4@ ZERD$="a96008030006000048 " answer {C$) =0

10606 X=LEMH{A$> Y=LEMNIE$> I

1602 IF ¥>¥ THEM F=b/ 2 GOTO 16@E Set dnider pont F

1084 F=4/2

1@A6 IF FRIMTIF2THEM F=INT(FI+] $

Dwige AS$ and BS
o parts
high and icw

1628 AH=VALLEFT$ (A¥. K-F)>

1036 AL=VAL(RIGHT¥A$.F o>

1948 IF Y<=F THEN BH=@: EBL="HLC(E$>» GOTO 107V
18568 BH=YALC(LEFT$(E$.¥Y-Fi>

1060 BL=VAL(RIGHT$(B$.F 1)

1870 F1$=STR¥ (BL*AL »

1080 FEE=STREC(BL¥AHI+F$ Multiply A$ and BS
1998 FIF=STRE(BHEALI+F§ and align products
1168 FI$=STREEHKAHI+F$+F§

1808 F$=LEFT$(ZEROF.F>
1818 IF X{=F THEM AH=@ AL=WAL(A$FI GOTO 1o4a

Step 4: Add the four products together. This is the most complicated part of the
“Multiple Integer Multiplication’ program because parameters are passed back and
forth from the main program to an addition subroutine. We will use a portion of the



206 PET/CBM Personal Computer Guide

**Addition using Numeric Strings’® program as a subroutine to add the products
together. Below is the portion of the addition program we will be using as a subroutine:

2000 REMIKADD FRODUCTSH%

2910 BLANKS$=" "

2020 X=LENCA$) :Y=LEMCE$)

203@ IF <Y THEN A$=LEFT$(BELANKS.Y-X)+A$

2040 IF X>Y THEN B$=LEFT$<BLANKS$.X-Y)+B$

2050 D=0:N=1:C$=""

2060 FOR I=LEMC(A$> TO 1 STEP-1

2078 A=VALMID$CA$. I1.10)

2680 A=A+D:D=@

2090 B=VAL(MID$<(B$,1.1>)

2180 C=A+E

2110 IF C>=1@ THEN D=1

2120 IF D=1 AND I=1 THEN N=2

2130 C¥=RIGHT$(STR$(C).N)+C$

2140 NEXT 1

Atline 1110 the contents of P1$ and P2$ are passed to the parameters A$ and BS,
which are used in the addition subroutine (lines 2000 and 2140).
1116 A$=F14%: B4=F2¢
A$ [s[e[o[g[o[o]ofT]
8$ [9[a[9[s[olofo[1[ofo[o]0]
Notice that the contents of A$ and B$ are not the same as those input at line 20. The
same variable names are used to allow program compatibility between all four math pro-
grams. Only two parameters are passed at a time because the addition subroutine adds
only two numbers at a time.
Once the values for P13 and P2$ are passed to A$ and B$ the addition subroutine
is called:
1128 GOSUE Z@ea
AS and BS$ are right-justified and equated in length for addition by adding blanks from
BLANKS to the shorter string (if there is one) in lines 2010 to 2040:
2010 BLANKS$=" "
2626 X=LENCA$) :Y=LEMCE$)
2@30 IF <Y THEN R$=LEFT$(BLANKS.Y-X)+A$
2040 IF X>Y THEN E$=LEFT#CBLANKS.X-Y)+B$
Statements 2050 to 2140 add the corresponding digits of A$ and B$ and convert
the sum C into the numeric string C$. (A full explanation of this process is given in the
““ Addition using Numeric Strings’’ section.)
2050 D=@:N=1:C$=""
2060 FOR I=LENCA$> TO 1 STEP-1
2078 A=VAL(MID$C(A%. 1,12
2080 A=A+D:D=0
2090 B=YAL(MID$<B¥.1.12>
2108 C=A+B
211@ IF C>=10 THEN D=1
2120 IF D=1 AND I=1 THEN N=2
2130 C#=RIGHT#(STR$(C).NX+C$
2140 MEXT I

The sum, C$, is passed through a FOR-NEXT loop to truncate any leading blanks
or zeros at lines 3000 to 3060. This truncation routine is from ‘‘Subtraction using
Numeric Strings.”

3000 REM##¥TRUNCATE LERD ZEROS¥¥#

@01 L=9

3818 FOR I=1 TO LENCC#>

3020 IF VAL(MID$<C#.I.1>>=0 THEN L=L+1
3030 IF VALCLEFT#(C#,1>><>@ THEN I=LEN(C$>
3040 NEXT 1

305@ C#=RIGHT#(C#¥,LENCCS$>-L>

3060 RETURN



Chapter 5: Making the Most of CBM Features 207

C$, the sum of P1$ and P28$, is returned to the main program and converted to
M18:
1130 M1$=C#
The contents of C$ must be transferred to M1$ because C$ must be cleared before the
addition subroutine is called again at line 1150 to add P3$ and P4S.
To add P33% and P4$ together, the values of P3$ and P4$ are passed to the
parameters A$ and B$ before calling the addition subroutine 2000:
1132 A$=FP3$ B$=F4$ GOSUE ZGo@

AS [9[s[s[e[o[o[ofolofo[a[o]
B$ [9[9[a[g[o]o]o]1]o]ofo]ojo[o[o]0]

The addition subroutine adds the corresponding digits of P38 and P48, truncates any
leading zeros, and returns sum C$ to the main program, where C$ is converted to M2$:
1135 Mz#$=C#

The addition subroutine is called a third time to add M1$ and M28§ together to get
the final answer, CS$.
1148 AF=M1$: FE=p23

AS EEEEEEEEE0EN
8$ [S[S[S[e[a[e[s[so[olo[To[o[o[]
1156 GOSUE 2006

Step 5: After the third return from the addition subroutine, C$ equals the sum of
all four products. Step 5 prints the answer. The GOTO 20 allows another multiplication

problem to be solved.
1156 PRIMT FPRINT"AHSWER=";C$: FRINT :GOTO 26
1266 EMD

The flow of the program looks like this:

10 PRINT" ***MULTIPLE INTEGER MULTIPLICATION® **~

20
Step 1 s 20 Input multiplier and multiplicand,

40 initialize variables

50
1000
1010

:ggg Calculate F, divide the multiplier, multiplicand

1040 into high and low segments

1050

1060

1070

1080 Multiply segments into four products
Step 3 1090 into four products P1%. P23$. P3§; P43

Step 2

e I

1100
1110  PassP1$ + P23 to parameters A3, B
( 1120 GOSUB 2000 2000-2140 addition subroutine.

add P1$ + P2§—C$
3000-3060 truncate leading zeros

1130  Pass contents of C$ —=M1$
1140~ Pass P3$ + P4$ 1o parameters A$, B$

1150 GOSUB 2000 2000-2140 addition subroutine;
Spepd < add P3% + P4$—C$
3000-3060 truncate leading zeros

’ 1160  Pass contents of C$ —M2$

1170 Pass M1$ + M2$ to parameters A$, B$

1180 GOSUB 2000 2000-2140 addition subroutine;

\ add M1% + M2$ —C$
3000-3060 truncate leading zeros

{ 1190 Prints C$
Step 5 11200 END



Chapter 5: Making the Most of CBM Features 208

Here is the multiplication program listing and sample run:

18 PRINT"##MULTIPLE INTEGER MULTIPLICATIOM®¥%":FRINT
260 INPUT A$.E$

3@ IF VALCA$>=0 OR VALCE$>=@ THEN C$="@":GOTO 113@
4@ ZERO$="0000000060000660"

1600 X=LENCA$) : Y=L ENC(E$)

1882 IF X>¥ THEN F=X/2:G0TO 10a&

1684 F=vy/2

1806 IF FOIMTC(F2THEN F=INT(F)+1

1808 F¥=LEFT$(ZERCE.F

1818 IF M<=F THEMN AH=0 AL=YALCA%) GOTO 1646

1820 AH=YALC(LEFT$A$. X~F) >

16830 AL=YAL(RIGHTS$A$,Fo

lad4a IF Y<=F THEN BEH=0 EBEL=YAL<E+) GOTQ 17

18530 EH=YALCLEFT$(E$.%-F1

1868 EL=VAL(RIGHT$ E$.F1>

1070 P1#=STRECEBL¥AL

16880 P2$=STR$(EL¥AH+F$

16956 F3$=STRECEH#RL Y+F ¢

1166 P4E=5TREBHEAH  +F$+F

1116 A$=P1$ E$=P2%

1126 GOSUER zoaa

1130 Mi$=C#$

1132 AF=P3I¥ BE¥=F45 GOSUE 2080

M2¥=C¥

FE=M1¥ BE=MI$

GOzUE zZeaa

FRINT :PRINT"AHSMER=",C$ FRINT :GOTO 28

EMND
FEM**HDD

FROTILICT = 4%

S

LEH Et-

»TOO1 BTEFP-1
H—”HL MIDsuHSJIﬁiﬂﬁ
H=A+T . 1=
E="ALMIDFE B$. I. 1+
C=A+E
IF Cx=16 THEH D=
IF D=1 AMD I=1 THEM H=2
CF=RIGHTF STREC . HI+CF
HERT 1
FEM*RKTRUMCHTE LERD ZEROS#H###
L=a
FOR I=1 TO LEMOCE>
IF WAL CMIDE I.
IF “ALCLEFT#CC$. 1
HEXT 1
CE=RIGHTF CE, LENICEI L
FRETURM

1=8 THEM L=L+1
@ THEM I=LEMHCCE:

#4% MULTIFLE IWNTEGEFR MULTIPLICATICHM®##

Srclalufalala o]y




Chapter 5: Making the Most of CBM Features 209

GRAPHICS

Computer graphics is a unique subject. Whole books are devoted to this subject.
Of necessity, the discussion that follows is brief.

The standard graphic character set includes 64 graphic symbols. Select
graphics by issuing a POKE 59468,12 if you are using the alternate character set, which
has very few graphic characters. If you have a CBM 8000 computer, select graphics
using the Graphic editing function, as follows:

100 print chr$(142):rem select graphics

The graphic characters are all located in the upper-case positions on the keys, so
they must be entered in shifted mode.

Many graphic characters are referenced and illustrated on the following pages.
Refer to Table 1-1 or Appendix A for easy reference to graphic character keys, names,
and symbols.

GRAPHICS IN IMMEDIATE MODE

Sketching in immediate mode requires no line numbers, no PRINT state-
ments, and no quotation marks. In immediate mode the cursor may be moved freely
up, down, right, or left to any spot on the screen without pressing the RETURN key
after each directional change. Below is an example of a square drawn in immediate
mode. Starting with the cursor in home position, the square was drawn left to right, top
to bottom, right to left, and bottom to top, in one continuous movement. No line num-
bers, program statements, or carriage returns were needed.

7 spaces
1 +

]» T

eaany

——+
4

-1

7 spaces

TTTTT

L1

We will use the square shown above as the basic graphic design to illustrate ele-
mentary graphics. Though simple in its design, sketching this square uses all CBM com-
puter graphic drawing technigues.

Draw a Square
There are nine steps to drawing a 7 X 7 square. They are:

Step 1: HOME the cursor. The top left corner of the HOME position space
becomes the top left corner of the square (Figure 5-3a).

Step 2: Type the upper left corner of the square. This is done by using the TOP
LEFT CORNER OO (Figure 5-3b).

Step 3: Draw the top line of the square. Because we will use a CORNER key for
the top right corner, type five TOP LINE HORIZONTAL 1 characters in this step
(Figure 5-3c¢).



210 PET/CBM Personal Computer Guide

a. HOME cursor b.Upper left corner c.Top side

- &

-

.Bottom right corner

d. Upper right corner e. Right side

. Left side

g. Bottom side h. Bottom left corner

I

# Denotes position of cursor at the completion of the step

Figure 5-3. Draw the Square

Step 4: Type the upper right corner of the square using the TOP RIGHT COR-
NER character (O (Figure 5-3d).

Step 5: Draw the vertical right side of the square. To allow space for the corner
key, type five RIGHT LINE VERTICAL (1.

We all know what this part of the square should look like, but does your screen
look like this instead?

10

If so, this happened because the cursor is automatically moved one space to the right
after any character is displayed. To enter characters vertically, the cursor must be reposi-
tioned both vertically and horizontally to compensate for the automatic cursor move-
ment to the right.

To print the vertical line of the square, then, repeat the sequence of CURSOR
DOWN, CURSOR LEFT, and RIGHT LINE VERTICAL. Do this five times, and you
should have printed the right side of the square (Figure 5-3e).

Step 6: Type the bottom right corner of the square using the BOTTOM RIGHT
CORNER character [1 . Before you type this, look to see where your cursor is; if you
haven’t already done so, use CURSOR DOWN and CURSOR LEFT to position the cur-
sor at the corner of the square; then press the corner key (Figure 5-3f).

Step 7: Draw the bottom line. Because we are using CORNER keys, we need just
five BOTTOM LINE HORIZONTAL characters (] (Figure 5-3g).



Chapter 5: Making the Most of CBM Features 211

One method is to enter the line from right to left. After each character entry on
the bottom line, two CURSOR LEFT movements will be needed to correctly position
the cursor for the next entry.

1st entry here 2nd entry here

A second, and possibly more natural, method of drawing the bottom line is from
left to right. To do this, position the cursor to the leftmost space of the bottom line (one
space to the right of the left edge of the screen); this can be done using six CURSOR
LEFTs. You can then easily enter five BOTTOM LINE HORIZONTALS to create the
bottom line of the square.

-~ - .- -

Step 8: Type the bottom left corner. Depending on which method you used to
enter the bottom line, you will need to use CURSOR LEFT two times (method 1) or six
times (method 2) to position the cursor at the bottom left corner, then use the BOT-
TOM LEFT CORNER character {J to complete this step (Figure 5-3h).

Step 9: Complete the square by drawing the left vertical side. You should be
able to type five LEFT LINE VERTICAL characters [ to complete the square (Figure
5-31). You will need to position the cursor before each entry, using CURSOR LEFT and
CURSOR UP.

PROGRAMMING GRAPHICS

Any graphics sketched directly onto the screen will be lost when you execute a
NEW statement or turn the power off, unless you first convert the graphics into a pro-
gram. You can convert any design sketched onto the screen into a program simply by
making each line on the screen a string which is to be printed as part of a program.

After you have sketched the square, move the cursor to the HOME position. Do
not press the CLEAR or RETURN key. If you press CLEAR you will lose your picture
forever. If you press RETURN, “READY"’ will be written through the middle of the
square as shown below:

L
R

Or, if you had made your square so large that the horizontal lines of the square were
printed on the top and bottom rows of the screen, and the cursor was positioned on the
bottom line, a RETURN would cause the display to scroll up one line in order to write
the READY message on the next line, losing the top of the picture.



212 PET/CBM Personal Computer Guide

Before RETURN After RETURN

T T 17T T
1717 T
) H

I
1
{
{ 1 1 ~+ s =
I L Ll L H CTITT 1 1 PITT

For this reason, pictures larger than 39 characters wide or 24 characters long should
never be drawn in immediate mode.

Once the cursor is homed, the next step is to move each line of the picture to the
right in order to insert line numbers, question marks (shorthand for PRINT) and
quotes. This converts each line from immediate mode to program mode so it may be
saved on a cassette tape or diskette.

When the cursor has been homed, it should be at the upper left corner of the
square (Figure 5-4a). Press INSERT five times so that the top line of the square is
shifted five spaces to the right (Figure 5-4b). Now there is enough room to type a line
number (100), ?, and opening string quotes (Figure 5-4c). Then press RETURN
(Figure 5-4d). The top line of the square is now a programmed statement. Continue
doing this for each line, incrementing each line number by 100 until the entire square
has been converted into program statements (Figure 5-4e, f).

Be sure to number the lines in sequential order to avoid distorting the picture.
Also, you do not need to move the cursor past the graphics to insert a second set of
quotation marks at the end of each line. After the first set of quotes is typed, merely
press RETURN. Your final program listing should appear as follows:

Gl

PRINT"
FRIMT" !
FRIMT" !
30 PRIMT™ [
W PRIMT 1
@8 FRINT |
[5]

()5
eds st
5]

-

Lt

Oyl

A )

4

Instead of creating graphics in immediate mode and converting them to a pro-
gram, you can skip immediate mode completely. To draw the picture in program mode,
each line of the picture is entered as part of a PRINT statement.

JE=T= Rl
: oy |

o n

The space directly to the right of the quotation marks becomes column number 1 on th .
screen. If you do not program with this in mind, your picture may end up shifted to the
left-hand side of the screen.

If you PRINT a string that has exactly 40 characters, you must include a sec-
ond set of quotes, and a semicolon at the end of the line. If you do not include the semi-
colon, an extra line will be displayed since the cursor automatically positions to the next
line after a display in column 40.



Chapter 5: Making the Most of CBM Features 213

a. HOME cursor b. INSERT five spaces

1

c. Complete program statement d. Key RETURN
1007

10077 '

e. Insert five spaces f. Complete program statement; key RETURN

100?"[_'__—| 1007?"
2007

# Denotes position of cursor at the completion of the step

Figure 5-4. Make Program Statement from Graphics

A hint before moving to the next aspect of graphics: it is advisable to draw your
picture or diagram on a piece of paper before drawing it on the screen. Map out on a
piece of graph paper an area 40 squares wide by 25 squares long, using one square on
paper for each space on the screen. Be sure to include space for the line numbers if you
are going to convert the picture to program mode. Once everything is ready, type the
program from the paper onto the screen.

ANIMATION

Any graph, number, design, word or picture may be programmed to move side-
ways, up, down, or diagonally, flash on and off, or display more slowly. These
changes may be programmed in almost any combination.

To demonstrate animation, we will begin by animating the small square pro-
grammed in the previous section. Instead of seeing the square appear instantaneously
on the screen, animation will allow a viewer to watch each element of the square
slowly appear on the screen.

The program to animate the square looks very different from the previous pro-
gram because the line segments are programmed as BASIC statements, rather than as
picture segments. There is no large square within quotation marks; the square is broken
down into individual graphic characters.



214 PET/CBM Personal Computer Guide

Time Delay

The animation program slowly moves the cursor so that the square appears to be
drawn on the screen. The display begins at the top left corner of the screen and proceeds
clockwise, as follows:

-—

The first step, as always, is to clear the screen. This also puts the cursor in the
home position.
S PRINT I
The second step is to type the left corner. However, do not draw the whole top line
as you did in the previous program, just the corner.
18 PRIMT ™
In order to see each element of the square being displayed, it is necessary to
slow down statement execution. This can be done by using a time delay loop. This
statement represents one way of creating a time delay:

188 FOR J=1 TO 18@:NEXT J:RETURHM

The FOR-NEXT loop increases the time that separates display of adjacent characters. It
forces the computer to count from 1 to 10 each time the statement is executed as a
subroutine. The TO index for J can be increased or decreased to lengthen or shorten the
delay. The larger the TO index, the longer the time separating the display of each
character.

For our animation program, then, we must include this time delay loop after dis-
playing each element. Since the programmed time delay loop remains the same for each
element, we call it as a subroutine. Therefore, after displaying the upper left corner of
the square, call the time delay loop as subroutine 100.

Programming Character Placement

The third phase is to print the top line of the square. Instead of programming
PRINT “ ™ ™" we will use a FOR-NEXT loop:
15 FOR I=1 TO S FRINT"™"; GOSUE 100 NEXT I
Statement 15 uses a FOR-NEXT loop so that the subroutine time delay can be called
between each printing of ** ™~ . If the computer is to sketch the square slowly, the time
delay must be called after each character is displayed. It would be useless to program:
1S FRIMT™ "5 CGOEUE 1699 =—— Incorrect
because the whole line would be printed instantaneously without any time delay.
To complete the top line, type the upper right corner. Again, include the time
delay subroutine call:
28 PRIMT" 7 GOSUE 160
So far, the program looks like this:
S PRINT"";
16 PRINT'M"; (GOSUE 168
15 FOR I=1 TO S:PRINT"™"::GOSUE 189 MEXT I
26 PRINT"T"; :GOSUR 160
3@ EMD
166 FOR I=1 TO 18@:NEXT J:RETURN




Chapter 5: Making the Most of CBM Features 215

Run the program. You should see the following display grow progressively,
from r to .

Hopefully, this is what you saw. If not, go back and find out what went wrong. Did
you forget the semicolons after each PRINT statement?

End all PRINT statements in this program with a semicolon (;}. The semicolon
concatenates graphic strings together when printed. This allows the *“ I ” and the top
line "’ to be concatenated together on the same line. Without the semicolons,
the CBM computer performs a carriage return after each statement, and the top line will
look like this:

The other three sides are drawn using a similar sequence. Line 20 begins the next
sequence, to create the right side vertical line. Note the use of cursor control inside the
FOR-NEXT loops to compensate for the automatic right cursor movement.

Here are the PRINT statements that must appear within FOR-NEXT loops to
generate the right side, bottom and left side of the square:

PRINT <RIGHT LINE VERT > <CURSOR L >

FRINT" BIM" rightside <CURSOR DOWN >

PRINT <BOTTOM LINE HORIZ ><CURSOR L >
FRINT"_AM" bottom <CURSOR L >

PRINT<LEFT LINE VERT ><CURSOR L >
FRINT"I I teft ssde <CURSOR UP>

The complete program listing looks like this:

S FRIMT".

18 PRINTYC". GOSUE 168

1S FOR I=1T7T0 S FRIMT" ™", GOSUE 186 HEXT 1
28 PRIMNT? Y. SOsS0E 1aa

2S FOR I=1TD S PRINT® BE": GOSUE 160 MEXT I
I8 FRIMTY 1, GOIUE 180

35 FOR I=I1TO S FRINT'_AEBI' . GOSUR 189 MEXT I
4@ FRIMT"L". OGOSUE 16889

45 FOR I=1TO S FRINMT"I MDY GOSUE 168@ MEXT 1
et EMD

@ FOF J=1 TQ 16 HEXT J RETURH

- in
5

Now try a trial run. Does your square look like this?
o

FEADY. |

| I
I I

I !
[ R
If this design appears instead of a perfect square, some of the cursor controls were left
out. The computer did exactly what it was programmed to do, so where is the problem?
Take a closer look at the program. We included cursor controls within the FOR-NEXT
loops for all four sides of the square. Now look at the screen. The problem is not with the
sides; therefore the problem must be in the corners. Look at statements 20, 30, and 40.



216 PET/CBM Personal Computer Guide

We forgot the cursor controls after each corner position. Make the proper changes, and
the program should look like this:

S PRINTO";

1@ PRINT"™; :GOSUR 1@@

15 FOR I=1 TO S:PRINT"™";:GOSUE 18&: NEXT I
208 PRINT"TWD"; :GOSUB 10@

25 FOR I=1 TO S:PRINT" BIg"; :GOSUE 1&3: MEXT I
30 PRINT"_BEI"; :GOSUE 16@

35 FOR I=1 TO S:PRINT"_NBI": GOSUR 188:NEXT I
4@ PRINT"LANY; :GOSUE 1@6

45 FOR I=1 TQ S:PRINT" B, :GOSUE 1&8:MEXT I
58 END

188 FOR I=1 TO 18@:NEXT J:RETURN

Now try another trial run. Your picture should look like this:

RERDY. |
£ }
| i
| |
| |

| S|

You should have been able to watch the computer slowly sketch the square on the
screen in a clockwise direction. Remember, you may change the print speed by changing
the TO index value for variable J in the time delay loop.

One last problem: how to avoid destroying the square with the READY message.

When the square has been drawn, the cursor is on line 2; when the program ends,
the READY message is displayed on the next line, which happens to be within the
square. Therefore, before ending the program, you must compensate for this by moving
the cursor below the square; the READY message will be written underneath the square
and not across it. This is done by printing several CURSOR DOWN's before the END
statement.

58 FPRINT" Naaelae" : E£HI)
This will move the cursor down below the square and the square will not be destroyed:

|

|
|
!
|

| S—
RERDY.

Enlarging the Square

Let’s take the small square we just animated and enlarge it so that it forms a boun-
dary one space from the perimeter of a 40-column screen:

- In) 106015 0 5 0 1 0 0030 60 0
! -y P

H-——1 pbee

IS0 R e ) h L
T Tt T I

If the screen is 40 spaces wide by 25 spaces long, the rectangle’s sides should be 38
spaces wide by 23 spaces long:

40—2 (1 space for each side) = 38
25~2 ({1 space for each side) = 23



Chapter 5: Making the Most of CBM Features 217

With just a few changes to the animated small square program we can draw a
larger rectangle that forms a screen boundary. FOR-NEXT loops were used in the pre-
vious animation program to print a string of graphics for each side. To enlarge the
square, change the value of the TO index to 36 for the horizontal sides and 21 for the
vertical sides, leaving spaces for the corners.

15 FOR I=1 TO 262 "™n, Horizontal sides
25 FOR I=1 TQ 21:7" BIQ“;

RS FOR I=1 TO Z&:7"_4W";

43 FOR I=1 TO 21:2"1 000, Vertical sides

Make these changes in your program and try a trial RUN.

That was simple. But, because you have created a boundary around the edge of
the screen, the last statement of the program (to move the cursor out of the square) is
unwanted. Instead, delete line 50 and program the cursor to move inside of the box and
print something; you do not want a boundary surrounding an empty screen. Be sure not
to program the cursor to go beneath the square, because the screen will scroli up, and
you will lose the top of the square. Program something to be printed inside the box, type
RUN and watch it go!

THE REAL TIME CLOCK

Another CBM computer feature is the real time clock. The CBM computer clock
keeps real time in a 24-hour cycle by hours, minutes, and seconds. The reserved string
variable TIMES$ or TIS keeps track of the time.

Setting the Clock

To set the clock, use the following format:

TIME$ = “hhmmss’

where: hh is the hour between O and 23
mm is the minutes between O and 59
ss is the seconds between O and 59

For hh, enter the hour of the day from 00 (12 AM) to 23 (11 PM). The CBM computer
is on a 24-hour cycle so that you can distinguish between AM and PM, unlike 12-hour
clocks. The hours from 00 to 11 designate AM, and the hours from 12 to 23 designate
PM, returning to 00 at midnight. At midnight, when one 24-hour cycle ends and
another begins, hh, mm, and ss are all equal to zero.

When initializing TIMES to the actual time, type in a time a few seconds in the
future. When that actual time is reached, press the RETURN key to set the clock.

TIME$="128158"

Accessing the Clock

To retrieve the time, type the following in immediate or program mode:
PTIMES
and the computer will display the time in hhmmss:

TTIMES
126208



218 PET/CBM Personal Computer Guide

The CBM computer clock keeps time until it is turned off. The clock needs to be
reset when the computer is powered up again.

Real Time Clock Operation

The CBM computer actually keeps track of time in *‘jiffies.”” A *‘jiffy’’ is 1/60
of a second. TIME, or TI, is a reserved numeric variable which is automatically incre-
mented every 1/60 of a second. TIME is initialized to zero on start-up, and is reset back
to zero after 51,839,999 jiffies. TIMES is a string variable that is generted from TIME.
When TIMES is called, the computer displays time in hours, minutes, and seconds
(hhmmss), but in fact converts jiffy time to real time. Notice that TIMES and TI$ are
not the string representations of TIME and TI; they are numbers representing real time,
calculated from jiffy time (TIME, TI). The conversion is done as follows. Each second is
divided into 60 jiffies. One minute is composed of 60 seconds. One hour is made up of
60 minutes. Therefore one second is 60 jiffies, one minute is 3600 jiffies, and one hour
is 216,000 jiffies, as illustrated below:

1

60 x Jitty lag— Second/60 = Jiffy
60 Jiffies

Jiffy

non

Minute = 60 X Second

=60 x (60 Jiffies) g~ Minute/60 = Second/60 = Jiffy
= 3600 Jiffies

Hour = 60 x Minute
= 60 X (3600 Jiffies) jg—8 Hour/60 = Minute/60 = Second/60 = Jiffy
= 216.000 Jiffies

The following statements convert jiffy time (J) into real time, shown as hours
(H), minutes (M), and seconds (S). A complete program follows the statement descrip-
tions.
Calculate hours

integer function takes only whole
number

i@ J=T1
28 H=IMTO I 216K

T
=
X
o

It any hours. subtract number of
2@ IF Her@ THEM J=J-H&Z1&0@ jffies in one hour by H to leave
remaining jiffies

Calculate minutes
M Integer function takes only whole
number

If any minutes. subtract number of
S IF M@ THEM J=J-M$2688 pifies in minutes by 7 to leave
remaining jiffies

Calculate seconds. Integer function

S8 S=IMT I @0
8 S=IMH € takes only whole number

[x)

5 FRIMNT"TREAL TIME" :FRINT:FRIMT:
g J=TI

15 T¢=TIME#

28 H=INT z 2

28 IF H J=T-H¥Z 1580



Chapter 5: Making the Most of CBM Features

HE=RIGHT:
ME=RIGHT:

188 PRIMT"H M: S
110 PRINT alqe"  GOTOiE

219

In the program above, statements 70 through 90 convert the numeric answers into
proper string form for tidy printing. Statement 100 prints both the real time calculated
from the program, and TIMES, the real time calculated automatically by the computer.

Notice that the result is the same in both cases.

To get an idea of jiffy speed and the conversion from the jiffy to the standard
clock, type in the following program; it displays the running time of both TIME$ and

TIME (TD):
S REM #¥RUNNING CLOCKS##

1@ PRINT "REAL TIME: " FRINT:FRINT “JIFFY TIME:

2@ FOR I=1 TO 235353

28 PRINT"&"; TREC133.TIMES
4@ FOR J=1 TO &@& STEFP =
S@ PRINT"SA" . TARC12):T1
68 MEXT J

7@ NEXT I

The FOR-NEXT loop for TIME in line 40 increments by STEP 2 (every two

jiffies) for two reasons:

1. Displaying 60 jiffies a second is too fast to read.

2. Displaying each jiffy takes longer than incrementing the jiffy. This delays the
loop, so the TIMES display is slower than it should be. By incrementing and
printing every other jiffy we can minimize this delay problem. Run this pro-
gram and you will see that jiffies increment to 60 within each second. Run this
program without STEP 2 in line 40 and see the time delay when printing

TIMES.
Real time: 006704
Jiffy time: 25500

Keeping time in jiffies is useful for timing program speed. This lets you test the

efficiency of a program. Consider this short program:

18 FRINT " M#KEYEOARD TEST##" FRIMT
268 FOR I=32 TO 127

FRINT CHR$(I);

NEXT I

FOR J=1e1 TO 255

FRINT CHRE$C T

MEXT T

FRIHT PRIMT  FRINT"#&EHD TESTH#®"

h
o

W od O e G
[ A R AN

We can compute execution time for this program as follows:

TI (or TIMES) is assigned to a variable constant at the start of the time test.
2. TI (or TIMES$) is reassigned to a different variable constant at the end of the

time test.

3. Subtract the first TI variable from the second. This will give you the amount

of jiffy time it took to process the program that lies in between.



220 PET/CBM Personal Computer Guide

The listing below shows the three added steps:

Step 1 1@ PRINT"D#R¥KEYROIARD TEST#%" - FRINT
15 A=TI
Ze FOrR I=32 TO 127
28 PRIMT CHR$(CI>.
48 HEXT 1
56 FOR J=161 TO 255
&8 PRIMT CHREC(JI)
7@ HNEXT J

7o B=TI
Step 2 @@ PRIHT :PRINT  FRINT "#¥END TEST##"
Step 3 1@@ PRIMT FRIWMT"TI = ":EB~A

At line 15, variable A is set to the current value of TIL.
15 A=TI
A = TI[B001762
A[FO01762
Then, as the program is processed, Tl increments 60 times every second. At line 75, B is
set to the current value of TI.
TS E=TI
B=Ti
B={6001953
Line 100 subtracts the first value of TI (A) from the second (B).
168 FRINMT FRIMT TI=".E-A

B| 6001953
- A[H001762

191

The example shows that it took 191 jiffies to print the keyboard characters on the screen.
Dividing jiffy time (191 jiffies) by 60 (the number of jiffies in a second):
191/60=31833

shows it took 3.1833 seconds (191 jiffies) to process the program. Below is a sample run
of the program.

#REEYEOARD TESTH#

PURENE T COR+, - S@1 23456789 1 {=>7@ABCDEFG
HIJKLMNOFPARSTUVIRYZL I D P U#EH&” O+, =/
G123456789 ;=0T B k¥ (Fobm ) ™

-l A T LT ] a0 e Y
e & k¥ el T ™ o

*HEND TESTH#

TI = 131

Digital Display Clock

The following program is a fun program. It is a variation of the CBM digiial clock
using enlarged numbers 0 through 9, created with the graphic characters. The program
prints out only the hour and minutes due to the size of the screen. The program is long,
as you can see, but it is made up almost entirely of PRINT statements to print the num-
bers. After keying in the program, watch it run.



Chapter 5: Making the

196
11@
128
13&
148
19@
166
i7a
1ce
15@
pegaje]
21a
b [
Sila
Se

Sze
S0
bl
Sea
ag

=

&1

1866
1661
1602
1@@3

& PRINT"

GE FRINT
7 OFRINT®
28 FRINTY

. FPRIWT"

S FRINT"A
" FRINT" &
& FRINT" ™A
4 PRIMT"

3 RETURH
1

Most of CBM Features 221

FRINT " TIdaldeiin”
S=INTLTIME €8>
M=IHT (S 682
H=IMT (M /€@
M=M-—-H¥SE
T=H
GOSUESoe
FRINT "3
T=M
GOSURS00
FRENT"TRBI" ;
GOTO1t1@
U=sT—10%INT (T, 180
T=INTC(TA1E2
I=T+1

GOSUB6GE

D=L+1

GOSUREOR

RETURHN

0N I GOSUR 1006,
1706, 1806, 1306
RETURM
FRIMT" @&
FRIWT" @
PRIMT" &
FRIMNT"H
FRIMT"R
FRIMT"&

100 Nl MG CYTITITE ¢

1106, 1290, 1304, 140¢, 1508, 1680,

- JEAREEEEM

[‘ Ll W Nt \‘

i
FETURN
FRIMT”
PRINT"

]

FRIMT"
FRIMT®
FRIMT"

INARNENR"
FRINMT" YTITITI G
FRIMT"
FRINT" S
FRIMNT"
FRINT"S
FRIMT"
PRIMT"
FRIMNT"
FRINT"
FRIMT" &
FRIMT" S
RETLIFEH
FRINT"
F F IHT" 3

IRSRREENIN" ;

PRINT"&



222 PET/CBM Personal Computer Guide

FRIMT" %3 L gl {1111 0N
FRIMNT" -3 - TITITYITTITY
] FETURH
14m1 FRINT" 8 INEPREERIv
1431 PRIMT" W B JARERERERIN
1468z PRINTY E -
1483 FRINT" # -
1484 FRINT" 3 Wy
1435 FRINT'H ™ 3
1486 FRINT" R H
1487 FRIMNT" & L1113 ] ] LU
1482 PRINT" § = JANBIEEEIN
1463 FRINT" q o= TITTITITITY.
1418 RETURH
1588 PRIMT" A L1111 ] ][O

1581 FRIMT"R
1582 FRINT"' A
1562 FRINT"A
FRIMT"&
FF IHT"

FE IHT

FPRIMT A
FRIMT".3
FREIHT" W3
RETLIRM
FRINT" @
FRINT" @&
FRINT"Q
FRIMT" A
FRINT" ™
FRIMT" &
FRINT"®R
FRIMT"R
FRIMT" R
FRIMNT" W3
FRETURHM

FRIMT"&
FRIMT"®R
FRINT®

FRINT"

FRIWT"

FPRINT"

FRIWT"

FRIWNT"

& FPRIMT"

FRINT"

FETURH

FRIMT" =
FRIMT" @
FREINT "% =
FRIMNT"% -
FRINT" R
FRIMT 3"
& FRINT" "3 m»
P FRINT'S -
& FRIMT"™3 SIRREARER[n

S FRIMNTY %A [_d TITITITIN.
a RETURM
5]
1

g
X

DX IR )
[N IR & Y

QR R N ]

Pt bn bes b b R b b bbb bt b ks Rt bbb ba b b R b be bk b b e b b b ks b bk b b h s pes bk bk b ba pa b b g

=3

2308 FRINT" @ B sAENARERPT
281 FRINT

=] FRIMT"4 w9

] FRINT"AR . X
= FRINT"W3 ENANEENIN




Chapter 5: Making the Most of CBM Features 223

FRINMT" 3 MERRNNERIY
FRIHT" S MAEARARE
: FRIMT"Q - 57 SERERRNRl

A PRIMTNE L gt 1l 1]]]] ;
FOFPRINT" w& - TTITITITY
FETURH

o

RANDOM NUMBERS

Random numbers are generated by the CBM computer using an algorithm that
depends on a starting number, or seed. The same seed always generates the same
sequence of random numbers.

RANDOM NUMBER SEED

Every CBM computer has a constant initial seed number which it generates when
power is first turned on. This initial seed number will probably differ from one CBM
computer to the next, but for any single CBM computer the same seed is generated
whenever power is turned on. Therefore, for any single CBM computer, the same initial
sequence of random numbers will be generated each time the computer is powered up.
The display below shows the first five numbers of a typical sequence, ds it might appear
when the RANDOM function RND(arg) is executed after power-up:

##% COMMODORE BASIC #H##

7167 BYTES FREE

FOR I=1 TO S:7% RMDC1)Y HEXT
RUN

]

RERDY.
CBM computer random function logic is best visualized as accessing a large
number of fixed random number sequences. These random number sequences will
vary from one CBM computer to the next, but they will always be the same for any given
CBM computer.
Each random number sequence is identified by a seed, which is a negative num-
ber. This may be illustrated as follows:

Four random
number seeds

First five random
numbers in
each list

First five random
numbers in each list

Every negative number seeds a different random number list. There are
innumerable negative numbers, therefore there are innumerable lists of random num-
bers which can be accessed by any CBM computer.



224 PET/CBM Personal Computer Guide

You select any random number sequence by executing any BASIC statement that
includes the RND function with a negative argument. You can use a simple assignment
statement such as:

28 K=RND(-2)

Executing a BASIC statement that includes an RND function with a negative
argument has the effect of resetting a pointer to the first random number in that nega-
tive argument’s random number list. For example, on one particular CBM computer,
executing the assignment statement on line 20 above will reset the random function
pointer to the number .271819872, the first number in the list seeded by — 2. This reset
will occur every time the RND(—2) function is encountered. The CBM computer that
was used to generate this particular example selects the number 271819872, but
another CBM computer will have a totally different fixed random number sequence
initialized by the (—2) seed. If you have three CBM computers, each will have a
different random number sequenee initialized by the (—2) seed; however, each CBM
computer will initialize to the same random number sequence on encountering an
RND(—2) function.

Random Number Sequences

Having initialized the random number generator to the first number in a partic-
ular list, you access sequential random numbers in the list by executing any BASIC
statement that includes an RND function with a positive argument. Here, for exam-
ple, is a program that will display the first six numbers of five random number
sequences, seeded by the negative functions —1 through —5:

FOR I=-1 TO -5 STEF -1
: =RNDCI Y PRINTI

8 FOR J=1 TO 5

S8 PRINT RMI:1

58 NEXT T

7@ NEXT 1

198 STOP

The random function on line 35 occurs in the outer FOR-NEXT loop; it resets the ran-
dom function generator pointer to the first element of five different sequences for the
five negative values of . —1, —2, —3, —4, and —5. The inner FOR-NEXT loop (lines

40, 50, and 60) displays the first six elements in each of these five random number
sequences.

- BEPE7SE1 3
. 365311257




Chapter 5: Making the Most of CBM Features 225

To demonstrate the existence of a fixed number sequence in each random list,
stop the generation of numbers for a list and then restart it. Look at the following
modification of the random number generator program:

FOR I=-1 TG -5 STEP -1

DT PRIMTI

40 FOR J=1 TO =
3 FRINT RMICL)

S8 HE J

=18 10 11
FHICL

"; FOR
FEINT
HE,

This program again references the first six elements in five random number lists, but it
does so in two separate FOR-NEXT loops. Nevertheless, when you execute this pro-
gram you will get exactly the same display as the earlier program. In other words, it does
not matter where or how a random function with a positive argument is executed, it will
always access the next element of the fixed random number list identified by the most
recent negative seed. Moreover, any time this negative seed is encountered in a subse-
quent random function, the list pointer immediately returns to the first element of the
sequence. For example, add this statement to the program shown above:

B85 K=RNDI

Now when you execute the program, you will access the first three numbers in each list,
then the first two numbers in each list will be re-accessed.

Now experiment by keying in the programs illustrated above. Vary both the nega-
tive seed numbers specified by the I index in the outer FOR-NEXT loop, and the num-
ber of elements selected by ] and K in the inner FOR-NEXT loops. Experiment in this
fashion until you are completely satisfied that you understand the manner in which ran-
dom numbers are generated.

Printing Random Numbers

In order to better compare random numbers, you should print results rather than
displaying them (assuming you have a printer). Although printer programming is de-



226 PET/CBM Personal Computer Guide

scribed in Chapter 6, necessary additional statements are shown below in order to select
a printer.

18 OFEM 4.4
=8 CMD 4
: I=—-1 TO -5 STEF -1

5 - J=1 TO S
56 FRINT RMDGLD

SR HEXT J

NEXT 1

PRINT#4

n CLOSE 4

106 STOF

Statements on lines 10 and 20 select the printer: statements on lines 80 and 90 deselect
it. Make sure the printer power is turned on, and that it is connected correctly to your
CBM computer; then use variations of the program illustrated above to experiment with
random numbers. The hard copy printed with each experiment will make it easier for
you to compare the numbers generated by different variations of your program.

If you execute a statement that contains an RND function with a 0 argument,
then the random number generated depends on the system clock. But there are
similarities in random number patterns generated by sequences of RND functions with
a 0 argument. To prove this to yourself, change the argument of the RND function on
line 50 from 1 to 0 and reexecute the random number generator program a few times.
You will see that no two sequences of numbers are identical, but they certainly are quite
close.

Random Seeds

To generate a totally different random number you need to have some way of
generating a totally random seed. This can be done using the current jiffy count, TI:

1@ X=RND(-TI>: REM START SEED

Now you will get a different random sequence started each time statement 10 is
executed.

A more nearly pure random seed can be obtained by using RND (—RND(0)),
but only if your CBM computer has the new BASIC ROMs. For example:

19 ¥=RND{—-RNI(B) »

Here again you will get a different random sequence started each time statement 10 is
executed.

In the programs that follow, —TI is used, as it is compatible with both the old and
new ROMs. If you have the new ROMSs, you can use —RND(0) in place of —TI.

Generating Random Dice Throws

Random numbers are initially generated in the range 0 through 1. You will have
to convert the random number to whatever range you require. Suppose numbers must
range from 1 to 6 (as in one die number of a dice game). You will need to multiply the
random number by 6:

6+RND(1)
This gives a floating point number in a range just greater than 0 but just less than 6
(0<n<6). Add 1 to get a number in the range l<n<7:

6+RND(1)+1



Chapter 5: Making the Most of CBM Features 227

Then convert the number to an integer, which discards any fractional part of a number,
returning the number in the range 1 to 6 but in integer form:

INT(6-RND{1)+1)
or:
A%=6-RND(1)+1

The general cases for converting the RND fraction to whole number ranges are
shown below. Note that the INT function will only handle numbers in the integer range
*+32767.

INT{{n+1)*RND(1)) Range O to n

INT(n-RND{1}+1) Range 1 ton

INT ((n—m+ 1)-BRND{1)+m Range mto n
Now experiment with a variety of different random number ranges by modifying the
statement(s) illustrated above.

The program below shows —TI being used to generate a random seed. This pro-
gram calculates numbers in the range m to n; in this program, the values of m and n are
set in line 10 for a given program run. Note that these values can be negative. In the
following example, the display is an unending sequence of random numbers between
—50 and +50. (Press the STOP key to end the program.) A different sequence of num-
bers will be printed each time the program runs, since —T1 provides a random seed.
Note that the X value returned from RND(—TI) is displayed instead of the TI value.

18 M=-50: N=506

20 X=RNDC-TI> :PRINT X
3@ FOrR I={ TO &

48 CZ=(H-M+124RNDC 1) +M
S8 PRINT CX, -MHEXT I

&@ PRINT GOTO Z@

RUM
2. 27€330ESE-06
-14 9 -34 -35 47 -44 28 31
29 -8 -3€ -28 -42 ~23 1S 14
7o-13 3 -8 & 41 1
35 12 24 -
~32 49 7 -4
-1z 7 27 1
48 49 1 3
-1 5 -30 z
48 -15 -1z
20 2@
-16 a3
-ze s
-47 ~3€
-34 36
-15 1%
-45 37
-5 -35 -35

; -28 45 -7 -

27 33 -14 ~36 -€ 4 10
17 2 43 © -3@ -5 3Z
- 13

32 -24 -37 -3
-3 3m 10 8
Se 43 38 -2
-35 -1& -5 27
-49 ~45 27 7 -35

o

AR

Ll SO R

w




228 PET/CBM Personal Computer Guide

To illustrate different number ranges, change the values of M and N in line 10 of
the above program. For example, make M=1 and N=6; this will generate and unend-
ing sequence of random numbers between 1 and 6.

Random Selection of Playing Cards

A quick scan of the display above shows that numbers repeat within the first 100
generated. That is, every 101 numbers will not pick a number in the range —50 to +50
with every number present and no duplications. This is fine in, say, a dice game where
you take the rolls as they come. For other random number uses, however, you may
need to develop random numbers in a certain range where every number is accounted
for, and there are no duplications. An example is dealing from a deck of cards. You
need to pick a card, and when that card has been picked it cannot be picked again during
the same deal.

The program below shows one way to program shuffling a deck of cards on the
CBM computer. This program fills a 52-element table D% with the numbers 1 through
52 in a random sequence. (Element D% (0) is not used.) The cards can be pegged to the
random numbers in any way, such as:

A=1,2=2,3=3,.,Q=12,K=13

Spades=0, Hearts=13, Diamonds=26, Clubs=42
With this scheme the Ace of Spades=1+0=1, the Queen of Spades=12+0=12, the
Three of Hearts=3+13=16, etc.

In the shuffle program, a 52-element flag table FL keeps track of whether a card
has been picked or not. PRINT statements are inserted to display the seed value,
followed by the numbers, in a continuous-line format. Note that exactly 52 numbers are
displayed and that no number is repeated. Each program run will produce a new random
sequence.

16 DIM FL(S2),D¥(52)
268 R=RHMDC(-TI):PRINT X
3@ FOR I=1 TO 52
48 CH=52%RND(15+1
58 IF FLCCX)<>0 GOTO 48
6@ Ducl)=Cx:FL(CX>=1
78 PRINT CZ:
88 MEXT 1
RUM
1.135866132E-05
42 48 12 37 5B 43 46 31 45 44
23 38 25 11 9 35 32 28 24 41
26 5 6 1 45 18 21 14 42 28 15
24 18 52 47 7 16 & 19 33 36 4
17 3 22 27 29 28 39 2 51 1z
RUN
1.81154728E-06
14 35 52 S8 26 48 27 36 34 25
13 26 41 33 39 7 46 24 22 28 1
9 3 12 43 2 31 44 4 1 32 37 3
B 48 22 45 48 42 49 16 11 & 1@
29 % 51 17 8 15 38 5 21 13

But this program runs more slowly as it nears the 52nd number. It is especially
slow on the last card. This is because the program has to fetch more and more random
numbers to find one that has not already been picked. A simple routine such as this has
much room for improvement, of course. It can be speeded up just by findng the last
number in the program from the table rather than waiting until it is selected randomly.



Chapter 5: Making the Most of CBM Features 229

RANDOM POKE TO THE SCREEN

The following program is a modification of program BLANKET. Instead of dis-
playing a character in continuous-line format, this program filis the screen by randomly
POKEing the character into the 1000 positions of the screen.

Here is the first version.

18 REM #dgdok#d  E L A M K E T ###ddss
2@ REM RANDOM DISFLAY OF OHE

@ REM  CHARACTER EWTERED FROM THE

48 REM  KEYEBOARD

SE REM b bk f kR A R SR AR AR AR
2@ FRINT"HIT A KEY OR <R> TG EMD"

168 GET C$:IF C#="" GOTO 18@

185 IF C#=CHR$(13> GOTO 179

11@ PRINT"IY ‘REM CLEARR SCREEH
12 H=RMDC(-TI> ‘REM START HEW SEED
CRSCCCEYANDIZE) /2 OR (ASCOCF I AMDES)
A=1E800#RNIN{ 1 ) +37EES
FOKE R.C ‘REM DISFLAY CHAR
GET D#%:IF D#="" GOTO 127
C¥=D¥
B GOTO 1995
& EMD

The program is the standard BLANKET program through line 110, where a new
character is input and the screen is cleared. The statement on line 120 stores a new seed
in preparation for a random display sequence on the screen. The statement on line 125
converts C$ to its equivalent POKE number. The statement on line 127 caiculates a ran-
dom screen address in the range 32768 to 33767, using the RND range formula with
m=32768 and n=233767 as follows:

(N—=m+1)+RND(1}+m Range formula
(33767-32768+1)-RND(1)+32768 as used in line 127
=1000-RARND{11+32768

Neither the INT function nor an integer variable {which would have been A%)
can be used, because the screen addresses begin just beyond the maximum integer
value of 32767. Fortunately the POKE function, which is where the screen addresses
will be used, simply discards any fractional portion of a real number address presented to
it. (For other applications when you are dealing with random numbers outside the
integer range, you will have to check that the floating point equivalent provides the
intended range.)

The first version of the program above randomly fills the screen with the keyed-in
character. It does this by simply POKEing to random screen locations. It may POKE
many times to the same location when other locations are not yet filled, and it continues
to POKE, even after the screen is filled, until a new character is keyed in.

When the program is run, about half the screen positions quickly fill with the
character. Then character placement slows down more and more until at the end, when
the screen is almost filled, and remaining positions are filied very slowly. It takes about
three minutes to completely fill the screen with this version of the program.

The program is operating at the same speed throughout, but it does not get much
work done towards the end, because many of the positions that it POKEs to are already
filled. The program appears to slow down because displaying a character over the same
characizr =as no visible effect.

T=2 rrogram can be speeded up a good deal by eliminating the superfluous
POKE: ©: soreen positions that are already filled. A new version of program BLANKET
does :m:s



230 PET/CBM Personal Computer Guide

Rather than calculating a number in the same range all the time and discarding, or
in this case re-POKEing, the duplicate numbers, the new program decreases the range
of numbers generated to correspond with the number of items left to operate on. It does
this by keeping track in a table of the screen positions remaining to be filled, and
generating a random number within the range of table indexes yet to be POKEd to. The
POKE address itself is retrieved from the contents at the table index.

S FEM RAMDOM VERSIOM 2

168 REM #k#sdkd B L A M K E T  #s#dses
2@ REM RAMDOM DISFLAY OF OHE

2@ REM  CHARACTER ENTERED FROM THE

4@ REM  KEYEBOARD

SE REM bbb o R AR RO
Té DIM T *

&E GOSUE Zeo REM IMITIALIZE TRELE
S PRIMT'HIT A KEY OF <R> TO EMI":

169 GET CF: IF CE="" GOTO 100

185 IF C#=CHR$<13> GOTO 176

118 FRIMT " "REM CLEAR SIREEH
126 H=RHDC HEW ZEED
125 VAT CE Y AHDES
126

1 3 REM FICK AH ELEM
== REM FORM FOKE ADDR
1oe AN ETOMY  TOMI=TE REM SWAF ELEMEMTS
13E ‘ . REM DISFLAY CHAR
148 HEHRT H

LE8 GOTO 168

173 EMD

13% REM #%SUER TO IMITIALIZE TAELE$#
SEE FOR I=@ TO 293 Toli=I1:HEXT

Z16 RETURH

In this program, the table holds the 1000 screen position indicators; it is dimen-
sioned on line 70.

At line 80 an initialization subroutine is called that places the numbers 0 through
999 into corresponding elements of Table T. T(0) will contain 0, T(1) will contain
1,. . .T(999) will contain 999. The elements do not have to be filled with consecutive
numbers since they are to be picked randomly, but this is the easiest way to program the
fill loop. In fact, the table will be in order only the first time the program is run after
loading. Lines 90 through 125 hold exactly the same program statements as in the ear-
lier version.

Lines 126 through 140 hold a FOR-NEXT loop that fills the 1000 screen locations
with the keyed-in character. The statement on line 127 picks a random table index A%
from the remaining unfilied range of 0 to N. The expression (N+1)*RND(1) performs
this task. The statement on line 128 forms the POKE address A as the sum of the T table
element whose index was picked on line 127, plus the beginning screen memory address
of 32768. The statement on line 129 exchanges the chosen table element T(A%) with
the highest active table element T(N) via a temporary location TP. The statement on
line 130 displays the character at the random screen location. The NEXT N at line 140
decrements the pointer N so that the used screen address just swapped into T(N) is not
picked again during the current program run.



	Chapter50041.BMP
	Chapter50042.BMP
	Chapter50043.BMP
	Chapter50044.BMP
	Chapter50045.BMP
	Chapter50046.BMP
	Chapter50047.BMP
	Chapter50048.BMP
	Chapter50049.BMP
	Chapter50050.BMP
	Chapter50051.BMP
	Chapter50052.BMP
	Chapter50053.BMP
	Chapter50054.BMP
	Chapter50055.BMP
	Chapter50056.BMP
	Chapter50057.BMP
	Chapter50058.BMP
	Chapter50059.BMP
	Chapter50060.BMP
	Chapter50061.BMP
	Chapter50062.BMP
	Chapter50063.BMP
	Chapter50064.BMP
	Chapter50065.BMP
	Chapter50066.BMP
	Chapter50067.BMP
	Chapter50068.BMP
	Chapter50069.BMP
	Chapter50070.BMP
	Chapter50071.BMP
	Chapter50072.BMP
	Chapter50073.BMP
	Chapter50074.BMP
	Chapter50075.BMP
	Chapter50076.BMP
	Chapter50077.BMP
	Chapter50078.BMP
	Chapter50079.BMP
	Chapter50080.BMP
	Chapter50081.BMP
	Chapter50082.BMP
	Chapter50083.BMP
	Chapter50084.BMP
	Chapter50085.BMP
	Chapter50086.BMP
	Chapter50087.BMP
	Chapter50088.BMP
	Chapter50089.BMP

