Chapter 8

CBM BASIC

This chapter describes the syntax for all CBM BASIC statements and functions.
Statements are described first, listed in alphabetic order; then functions are described.
ilso in alphabetic order.

This chapter serves as a reference for all statements and functions. Chapters 4, 5
and 6 describe programming concepts; these three chapters also give examples of state-
ments and functions used in programs.

Immediate and Program Modes

Most statements can be executed in immediate or program mode. Unless other-
wise stated, you can assume that a statement can be used in both modes. Exceptions are
-dentified. Some statements can be used in one mode, but not the other; other state-
ments can be used in both modes, but only one mode is practical.

BASIC Revisions

All statements and functions are identified as available with BASIC 4.0 only, or
with all versions of BASIC. Statements and functions are cross referenced where an “*all
versions’” statement or function has a BASIC 4.0 equivalent. All BASIC 4.0 statements
need DOS 2.0, or higher releases of DOS.

360 PET/CBM Personal Computer Guide

Format Conventions

Consistent syntax is used when defining the format for all statements and func-
tions. The following conventions have been adopted:

UPPER CASE Upper case words and letters must appear exactly as shown.

lower case Lower case words and letters are variable; the exact wording or
value is supplied by the programmer.

i Braces indicate a choice of items; braces do not appear in an actual
statement.

(1 Brackets indicate that the parameter is optional; brackets do not
appear in an actual statement.

Ellipses indicate that the preceding item can be repeated; ellipses do
not appear in actual statements.

line number A beginning line number is implied for all stored statements

Terms are used as follows in statement and function format definitions:

access the way in which a data file is to be accessed. Use WRITE for a write
access and READ for a read access.
bno the character number within a record of a relative data file
byte a numeric constant variable or expression which evaluates to a num-
ber in the range O through 255.
condition a relational term or expression of the type:
<
‘ : I
var <=> - (expression]
(N
> =

If the expression to the right of the relational operator is absent
then = O is implied.

constant any numeric or string constant

c$ a character string or CHR$ function representing a comma, carriage
return, or other legal separator in a PRINT# statement
parameter list.

<CR> a carriage return character

d a destination diskette drive number (O or 1).

data any constant, variable or expression.

datan any numeric constant, variable or expression.

data$ any string constant, variable or expression.

Dd a destination diskette drive number which must be specified as DO or D1.
destfile the name of a destination file.

dev a physical unit device number {see Table 8-1}

Table 8-1. Physical Device Numbers

Device Number Device

0 Keyboard
1 {default) Cassette tape unit 31
2 Cassette tape #2
3 Video display screen
4 Printer

5-7 IEEE port devices
8 Diskette unit

9-30 |EEE port devices

31-255 Currently unassignable

zmer 80 CBM BASIC

Table 8-2. Secondary Address Codes

Device

Secondary
Address Code

Operation

CBM Cassette
Tape Units

O tdefaultr
1
2

Qpen for read

Open for write

Open for wnte and end-of-file
{EOF) tape mark

Write end-of tape (EOQT) mark when
file s closed

CBM tine
Printer

0 idefault:

@ U BN —

O w®~

Normal Prnt
Print under format statement controt
Store the formatting data
Set number of lines per page
Enable printer format diagnostic messages
Oetine a programmable character
Set spacing between lines
iModel 2022 oniy)
Select lower-case
Select upper-case
Turn off Unit 4
Reset

CBM Diskette
Unit

=1

2-14
15

Not defined

Not defined

Open for Read Write as specified
Access parameter

* New printer ROMs only

a source diskette drive number which must be specified as DO or D1.

an arithmetic expression containing any combination of operators,

numeric constants and variables.

a diskette number which may range between 00 and 99, and must

be written as 100 through 199.

a logical file number (an integer between O and 255).

one of many basic program line numbers.

relative file record length. y is the number of characters per record; it
may range between 1 and 254. The record length must be
specified using the format L1 through L254.

any memory address. Memory addresses may range from O to 65536,

the standard BASIC 4.0 means of specifying a physical unit number.
ON U must be present; z is the physical number. If this
parameter is absent physical unit number 8 {the standard disk
drive physical number) is assumed.

the record number within a relative data file.

a source diskette drive number (O or 1).

a secondary address (see Table 8-2).

data file type specification. SEQ represents a seguential file, PRG represents
the program file, and USR represents a random access file.

any numeric integer or string variable.

any subscripted integer, numeric, or string variable.
a diskette number (between 00 and 99).

diskname the name assigned to a disk.
dr a diskette drive number (O or 1).
Ds

<ESC > the escape key or character.
expression

filename any file name.

lvv

If

line any basic program line number.
ling;

Ly

memadr

message any text string enclosed in quotes.
newname a new data file name

nvar any numeric variable name.
oldname any old data file name.

ON Uz

rmo

<RVS > the unshifted REVERSE key.

s

sa

sourcefile the name of a source data file.
statement any BASIC statement

type

var

var(sub)

vv

w

a parameter specifying the sequential file being opened for a write access.

361

362 PET/CBM Personal Computer Guide

BASIC STATEMENTS

APPEND# (BASIC 4.0)

The APPEND# statement opens an existing sequential diskette file and allows
new data to be added at the end of the file. (See also PRINT# COPY.)

Format:
APPEND #If,"filename"*[,Dd][ON Uz]
The APPEND3t statement opens sequential data file ‘‘filename’’ on the diskette
on drive d and positions file pointers beyond the current end of file. Subsequent
PRINT4H statements referencing logical file If can then write additional data, which gets

appended to the end of the file. If no disk drive is specified (d is absent) drive 0 is
assumed.

Example:

SFFPEND#1 ., "CALC" Open sequential file “CALC" as logical file # 1 on drive 0. Write
SRINT#1.A variable A contents to the end of the file

AFFEND#3, "TALK" . D1 Open sequential file “TALK" as logical file # 3. The string 123" is
PRINT#3, 123" added to the end of the file

BACKUP (BASIC 4.0)

The BACKUP statement duplicates an entire diskette. The duplicate and original
have the same header, disk name, identification number, directory, and files. (See also
PRINT# DUPLICATE.)

Format:
BACKUP Ds TO Dd [ON Uz]

The diskette in drive s is duplicated. The duplicate diskette is generated in drive d.
Duplicating the entire diskette takes a couple of minutes.

Example:
BARCKUF D@ TO D1 Duplicate contents of diskette in drive O to diskette in drive 1
BRCKUF DI 70O D@ Duplicate contents of diskette in drive 1 to diskette in drive O

Caution: All files on the diskette must be properly closed before the diskette is
backed up.

CLOSE
The CLOSE statement closes a logical file. (See also DCLOSE.)

Format:
CLOSE If

The CLOSE statement closes logical file If. If If is not present, all open logical files
are closed by BASIC < 3.0, but BASIC 4.0 gives a syntax error.

Chaprer 8: CBM BASIC 363

Every file should be closed after all file accesses have been completed. An open
logical file may be closed only once. The particular operations performed in response to
2 CLOSE statement depend on the open file’s physical device and the type of access that
occurred. For details see Chapter 6.

Example:
CLOSE 1 Close logical file 1
E

14 Close logical file 14

CLR

The CLR statement sets all numeric variables to zero and assigns null values to all
string variables. All array space in memory is released. This is equivalent to turning the
CBM computer off, then turning it back on and reloading the program into memory.
CLR closes all logical files that are currently open within the executing program.

Format:

CLR

A program will continue to run following execution of a CLR statement providing
the effects of the CLR statement’s execution do not adversely effect program logic.

Example:

ra
o
o
L)
=
0

CMD

The CMD statement sends to physical unit 4 (the printer) all output that would
have gone to the display. Output goes to the printer, instead of the display, until a
PRINTH# statement specifying the same logical file number is executed. At least one
PRINTH statement must follow a CMD statement.

Format:
CMD I

The CMD statement assigns a line printer output channel to logical file If. After
execution of a CMD statement, PRINT and LIST both print data instead of displaying it.
See Chapter 6 for a discussion of line printer programming.

Example:

The following sequence uses CMD to print program listings.
OFEM S.4 Open logical file 5 selecting the printer
CMD 5 Direct subsequent output to the printer

Print the'nragmm listing

SRIMTHS Print a carriage return and deselect the printer

CLOSE S Close logical file 5

364 PET/CBM Personal Computer Guide

COLLECT (BASIC 4.0)

The COLLECT statement recreates a Block Availability Map (BAM) for all files
on the diskette. Improperly closed files are closed or deleted.

Format:

COLLECT [DdI[ON Uy]

The diskette on drive d is collected. If the Dd parameter is absent, drive 0 is
assumed.

Example:
COLLECT Collects space on diskette in last drive accessed
COLLECT I& Collects space on diskette in drive O

COLLECT Dt Collects space on diskette in drive 1

CONCAT (BASIC 4.0)

The CONCAT statement concatenates two data files. (See also PRINT# COPY.)
Format:
CONCATI(Ds,]""sourcefile” TO [Dd,]"destfile” [ON Uz]

The contents of sourcefile on the diskette in drive s is concatenated onto the end
of destfile on the diskette in drive d. The file named sourcefile does not change. The file
named destfile keeps its original contents, with the contents of sourcefile tacked on at
the end. If drive numbers s and/or d are not specified, then drive 0 is assumed.

Caution: Files must be closed before they are concatenated.

Example:
COMCAT “FIRST" TO "SECOMWD" The contents of file FIRST is concatenated on the end of
file SECOND. Both files are on the diskette in drive O
CONCAT D1."AREC" TO D@, "xX¥YZ2" The contents of file ABC on the diskette in drive 1 is
concatenated on the end of file XYZ on the diskette
in drive O

The CONT statement, typed at the keyboard in immediate mode, resumes pro-
gram execution after a BREAK.

Format:
CONT

A break is caused by execution of a STOP statement or an END statement that
has additional statements following it. Depressing the STOP key while a program is run-
ning also causes a break. Program execution continues at the exact point where the
break occurred.

Pressing the RETURN key in response to an INPUT statement will also cause a
break. Typing CONT after this break re-executes the INPUT statement.

Example:

COMT

Crapter 8: CBM BASIC 365

COPY (BASIC 4.0)

The COPY statement copies a single diskette file, or all the files on a diskette. (See
zlso PRINT# COPY.)

Format:
COPY [Ds,]("'sourcefile”’] TO [Dd,][*destfile”](ON Uz]

If the COPY statement is used to copy a single file, then the file named sourcefile
on the diskette on drive s is copied to a new file named destfile on the diskette in drive d;
the file names sourcefile and destfile must be present, but if Ds and/or Dd are absent,
drive 0 is assumed.

The COPY statement can also be used to copy all files from the diskette in one
drive to the diskette in the other drive. To use the COPY slatemem\?n this fashion, file
names sourcefile and destfile must be absent, but drive numbers Ds and Dd must be
present and different.

If the name of a source file that is being copied exists on the destination diskette,
then the copy will be aborted at that file, and a FILE ALREADY EXISTS error will be
reported.

COPY does not modify any files previously on the destination diskette.

Caution: A file must be closed before it is copied.

Example:

Copy DI TO D@ Copy all files on the diskette in drive D1 to the
diskette in drive DO. (DOS 2.0 and higher
releases onlyl)

CORY D1, "MAJOR® TO D1, “MINOR" Create MINOR file on the diskette in drive D1

The DATA statement declares constants that are assigned to variables by READ
statements.

Format:

DATA constant[,constant,constant,...constant]

DATA statements may be placed anywhere in a program.

The DATA statement specifies either numeric or string contents. String constants
are usually enclosed in double quotation marks; the quotes are not necessary unless the
string contains graphic characters, blanks (spaces), commas, or colons. Blanks, com-
mas, colons and graphic characters are ignored unless the string is enclosed in quotes. A
double quotation mark cannot be represented in a DATA string; it must be specified
using a CHR$(34) function.

The DATA statement is valid in program mode only.

Example:
18 DATA HAME."C.D." Defines two string variables
S8 DATA 1E6.-18,XY2 Defines two numeric variables and one string variable

See the READ statement for a description of how DATA statement constants are
used within a program.

366 PET/CBM Personal Computer Guide

DCLOSE (BASIC 4.0)

DCLOSE closes a single file or all the files currently open on a disk unit. (Also see
CLOSE.)

Format:

DCLOSE#If [ON Uz] *

The DCLOSE statement closes logical file If. If the logical file number is not
specified, all currently open diskette files are closed.

Example:
DCLOSE Closes all open diskette files
ICLOSE#L Closes the diskette file identified by logical file 1
ICLOSE OM LS Closes all open diskette files on physical unit # 8
DEF FN

The DEF function (DEF FN) allows special purpose functions to be defined and
used within BASIC programs.

Format:

DEF FNnvarl(arg) =expression

Floating point variable nvar identifies the function, which is subsequently
referenced using the name FNnvar(data). (If nvar has more than five letters a syntax
error is reported. A syntax error is also reported if nvar is a string or integer variable.)

The function is specified by expression, which can be any arithmetic expression,
containing any combination of numeric constants, variables, and/or operators. arg is a
dummy variable name which can (and usually does) appear in expression.

arg is the only variable in expression which can be specified when FNnvar(data) is
referenced. Any other variables in expression must be defined before FNnvar(data) is
refzrenced for the first time. FNnvar(data) evaluates expression using data as the value
for arg.

The entire DEF FN statement must appear on a single 80 character line; however
a previously defined function can be included in expression, so user-defined functions
of any desired complexity can be developed.

The function name var can be re-used, and therefore redefined by another DEF
FN statement appearing later in the same program.

The DEF FN definition statement is illegal in immediate mode. However, a user-
defined function that has been defined by a DEF FN statement in the current stored
program can be referenced in an immediate mode statement.

Chapter 8: CBM BASIC 367

Example:

18 DEF FHC(R)=m¥EtZ Defines a function that calculates the circumfi of a circle. It
takes a single argument R, the radius of the circle, and returns a
single numeric value, the circumference of the circle

TENCCL Prints 3.141159265 (the value of m)

A=FHCC14) Assigns to A the value calculated by the user-defined function FNC,

using an argument of 14

S5 IF FHC(H)>E8 GOTO 156 Uses the value calculated by the user-defined function FNC as a
branch condition. The current contents of variable X is used
when calculating the user-defined function

DIM

The Dimension statement DIM allocates space in memory for array variables.

Format:
DIM varisub)[,varlsub),. . .,varisub)]

The DIM statement identifies arrays with one or more dimensions as follows:

var(sub) Single-dimension array
varlsub; subj) Two-dimension array

varlsub-,.subi.subkl Multiple-dimension array

See Chapter 4 for a complete description of arrays.

Arrays with more than eleven elements must be dimensioned in a DIM state-
ment. Arrays with eleven elements or less (subscripts 0 through 10 for a one-dimen-
sional array) may be used without being dimensioned by a DIM statement; for such
arrays, eleven array spaces are automatically allocated in memory when the first array
element is encountered in the program. An array with more than eleven elements must
occur in a DIM statement before any other statement references an element of the
array.

If an array is dimensioned more than once, or if an array having more than eleven
elements is not dimensioned, a PREDIM'ED ARRAY error occurs and the program is
aborted.

A CLR statement allows a DIM statement to be reexecuted.

Example:
18 DIM AC3) Dimension a single-dimensional array of 3 elements.
45 DM X$044.22 Dimension a two-dimensional array of 88 elements.
1686 DIM MUK Dis ion a two-di ional array of X times 3°8 elements and a

single dimensional array of 12 elements. X and B must have
been assigned values before the DIM statement is executed.

DIRECTORY (BASIC 4.0)

The DIRECTORY statement displays directories for diskettes in one or both
drives. The word CATALOG may be used instead of DIRECTORY (also see
LOAD*$dr™).

368 PET/CBM Personal Computer Guide

Format:

DIRECTORY[DdIION Uz]

The directory for the diskette in drive d is displayed. If the Dd parameter is absent,
directories for the diskettes in both drives are displayed.

If a selected drive contains no diskette an error status is reported.

The DIRECTORY statement is usually executed in immediate mode.

Example:
DIRECTORY Displays the directory of drive O and drive 1

DIRECTORY D1 Displays the directory of drive 1

Printing a Directory

A directory can be printed instead of being displayed by opening a printer channel
before executing the DIRECTORY statement. Here is the required immediate mode
statement sequence:

OFEN 4.4 Open the printer specifying logical file 4
crD 4 Deflect display output to the printer
DIRECTORY Print directories for diskettes in both drives

SRINTH#4 Deflect output back to the display
CLOSE 4

DLOAD (BASIC 4.0)

The DLOAD statement loads a BASIC program from a diskette into memory
(also see LOAD).

Format:
DLOAD ‘“‘filename’'[Dd][ON Uz]

The DLOAD statement loads program file “‘filename’’ from the diskette in drive
Dd into computer memory. If Dd is not present, drive 0 is assumed.

Example:
DLOAD "CALC" Load CALC file from drive O
DLOAD “TIME".D1 Load TIME file from drive 1
AF="FROG" Load PROG file from drive O
DLOARD A%

DLOARD"PROG" ., DG OH US Load PROG file from drive O on the disk unit

Using BASIC 4.0, if you press the shifted RUN/STOP key, the next program
encountered on the diskette is loaded and run.

Chapter 8: CBM BASIC 369

DOPEN (BASIC 4.0)

DOPEN opens a data file for a read and/or write access.

Format:

DOPEN #If, “filename’" [Lyl[,Dd][ON Uz][W]

The DOPEN statement opens data file filename on the diskette in drive d, assign-
ing to it logical file number If. If d is not specified then drive 0 is assumed. If Ly is not
present then a sequential file is assumed. The sequential file is opened for a write access
if W is not present; it is opened for a read access if W is present.

If Ly is present then a relative file is assumed with a record length of y bytes. Rela-
tive files are opened for read or write accesses, therefore the W parameter cannot be
present.

Example:
DOPEN#1 . "FRIZES" Opens the sequential file named PRIZES on drive O for a read access

TOPEM#E, "SHAKE"LZA. 111 Opens the relative file named SNAKE, with a record length of 30, for
read and write accesses. The file is on drive D1

DSAVE (BASIC 4.0)

The DSAVE statement writes a BASIC program file from memory onto a diskette
(also see SAVE).
Format:

DSAVE"filename’[,Dd][ON Uz]

The DSAVE statement saves the BASIC program currently in memory, writing it

10 a new file named filename, on the diskette in drive d. If Dd is not present, drive 0 is
assumed.

Example:
DSAYE"TRLE" Write program file TRUE to diskette in drive O
DSAYE“FALSE", D1 Write program file FALSE to diskette in drive 1

The END statement terminates program execution and returns the computer to
immediate mode.

Format:
END

The END statement can provide a program with one or more termination points,
at locations other than the physical end of the program. END statements can be used to
terminate individual programs when more than one program is in memory at the same
time. An END statement at the physical end of the program is optional.

The END statement is used in program mode only.

Example:

Z@aal END

370 PET/CBM Personal Computer Guide

FOR-NEXT STEP

All statements between the FOR statement and the NEXT statement are re-
executed the same number of times.

Format:

FOR nvar = start TO end STEP increment
[statements in loop)

NEXT [nvar]
where:
nvar is the index of the loop. It holds the current loop count. nvar is
often used by the statements within the loop.
start is a numeric constant, variable or expression that specifies the
beginning value of the index.
end is @ numeric constant, variable, or expression that specifies the end-

ing value of the index. The loop is completed when the index
value is equal to the end value, or when the index value is incre-
mented or decremented past the end value.

increment if present, is a numeric constant, variable, or expression that
specifies the amount by which the index variable is to be incre-
mented with each pass. The step may be incremental (positive)
or decremental (negativel. If STEP is omitted the increment
defaults to 1.

The nvar may optionally be included in the NEXT statement. A single NEXT
statement is permissible for nested loops that end at the same point. The NEXT state-
ment then takes the form:

NEXT nvary,nvary. ..

The FOR-NEXT loop will always be executed at least once, even if the beginning
nvar value is beyond the end nvar value. If the NEXT statement is omitted and no sub-
sequent NEXT statements are found, the loop is executed once.

The start, end, and increment values are read only once, on the first execution of
the FOR statement. You cannot change these values inside the loop. You can change
the value of nvar within the loop. This may be used to terminate a FOR-NEXT loop
before the end value is reached: set nvar to the end value, and on the next pass the loop
will terminate itself. Do not jump out of the FOR-NEXT loop with a GOTO. Do not
start the loop outside a subroutine and terminate it inside the subroutine.

FOR-NEXT loops may be nested. Each nested loop must have a different nvar
variable name. Each nested loop must be wholly contained within the next outer loop; at
most, the loops can end at the same point.

Example:
1@ FOR IN = @ TO 108
36 NEXT IN
186 FOR ¥ = A + 14 TO C-64+D/2 STEP 4
158 NEXT ¥
&6 FOR Al = S8 TO @ STEF -1

25 HENT
iga FOR I =

=

TO 18 STEF 8.5

1709
Zed FOR J A TO E

L]
on
L]
n
o
=M
bt
iou

208 MEXT I 208 MEXT

68 ®T I, T N
288 HERT J same as 218 HEXT 1 same as 1@ MEMT

Chapter 8: CBM BASIC 371

GET

The GET statement receives single characters as input from the keyboard.

Format:
GET wvar

The GET statement can be executed in program mode only.

When a GET statement is executed, var is assigned a 0 value if numeric, or a null
value if a string. Any previous value of the variable is lost. Then GET fetches the next
character from the keyboard buffer and assigns it to var. If the keyboard buffer is empty,
var retains its 0 or null value.

GET is used to handle one-character responses from the keyboard. GET accepts
the RETURN key as input and passes the value (CHR$(13)) to var.

If var is a numeric variable and no key has been pressed, 0 is returned. However, a
0 is also returned when 0 is entered at the keyboard.

If var is a numeric variable and the character returned is not a digit (0-9), a
’SYNTAX ERROR message is generated and the program aborts.

The GET statement may have more than one variable in its parameter list, but it is
hard to use if it has multiple parameters:

GET wvar,var,. . .,var
Example:

18 GET C#

18 GET D

1@ GET A.E.C

GET#

The GET External statement (GET#) receives single characters as input from an
zxternal storage device identified via a logical file number.

Format:
GET #If,var

The GET# statement can only be used in program mode. GET# fetches a single
character from an external device and assigns this character to variable var. The external
device is identified by logical file number If. This logical file must previously have been
opened by an OPEN or DOPEN statement.

GET# and GET statements handle variables and data input identically. For details
see the GET statement description.

Example:

18 GET#4,C#:IF C¥="" GOTO 19 Get a keyboard character. Re-execute if no character
is present

372 PET/CBM Personal Computer Guide

GOSuUB

The GOSUB statement branches program execution to a specified line and allows
a return to the statement following GOSUB. The specified line is a subroutine entry
point.

Format:
GOSUB In

The GOSUB statement calls a subroutine. The subroutine’s entry point must
occur on line In. A subroutine’s entry point is the beginning of the subroutine in a pro-
gramming sense; that is to say it is the line containing the statement (or statements)
which are executed first. The entry point need not necessarily be the subroutine line
with the smallest line number.

Upon completing execution the subroutine branches back to the line following the
GOSUB statement. The subroutine uses a RETURN statement in order to branch back
in this fashion.

A GOSUB statement may occur anywhere in a program; in consequence a
subroutine may be called from anywhere in the program.

Subroutines may be nested; that is to say subroutines may be called from within
subroutines. Twenty-six levels of nesting are allowed; that means 25 GOSUB state-
ments may be executed before the first RETURN statement.

Example:
i?g EEIEU%*EGGB Branch to subroutine at line 2000
X Subroutine branches back here
patisic] Subroutine entry point
2838 RETURH Branch back to line 110
GOTO

The GOTO statement branches unconditionally to a specified line.
Format:
GOTO In
The GOTO statement causes program execution to branch to line In.
Example:

18 GOTO 168

Executed in immediate mode, GOTO branches to the specified line in the stored
program without clearing the current variable values. GOTO cannot reference immedi-
ate mode statements, since they do not have line numbers.

_rapter 8: CBM BASIC i

HEADER (BASIC 4.0)

The HEADER statement formats a diskette, assigning it a disk name and iden-
wfication number. (See also PRINT# PREPARE.)

Format:
HEADER ‘‘diskname’’,Dd[,Ivw][ON Uz)

When formatting a diskette the HEADER statement marks off sectors on each
‘rack. then initializes the directory and Block Availability Map. The formatted diskette
~ust be in drive d. The diskette is given the name diskname and the number vv. This
~zme and number appears in the reverse field at the top of a diskette directory display.

The HEADER statement is usually executed in immediate mode.

The HEADER statement can be used to format a blank diskette or to reformat
=nd clear a used diskette. Because the changes are permanent, this command requires
~zution in its use. If executed in immediate mode, the question ARE YOU SURE? is
Zisplaved. You must respond by typing YES (CR) to continue.

If a media error occurs when the HEADER statement is executed, a ’BAD DISK

message is displayed on the screen. Media errors occur when a diskette is missing from
-z drive, the write protect tab is in place, or the diskette magnetic surface is defective.

Example:

HEADER "MASTER".D@, 182 Prepare and format a diskette, giving it the name “MASTER"
and the number 02. The diskette is in drive 0

IF-THEN

The IF-THEN statement prowdes conditional execution of statements based on a
-zlational expression.

Format:
IF condition THEN statement[:statement. . .] Conditionally te s fs)
IF condition {gg?& } line Conditionally branch

If the specified condition is true, then the statement or statements following the
THEN are executed. If the specified condition is false, control passes to the statement(s)
on the next line and the statement or statements following the THEN are not executed.
For a conditional branch, the branch line number is placed after the word THEN, or
zfter the word GOTO. The compound form THEN GOTO is also acceptable.

IF A = 1 THEN 50

IFA=1GOTO 50 } Equivalent
IF A =1 THEN GOTO 50

If an unconditional branch is one of many statements following THEN, then the
nranch must be the last statement on the line, and it must have ““GOTO line”’ format. If
the unconditional branch is not the last statement on the line, then statements following
the unconditional branch can never be executed.

The following statements cannot appear in an immediate mode IF-THEN state-
ment: DATA, GET, GET#, INPUT, INPUT#, REM, RETURN, END, STOP, WAIT.

374 PET/CBM Personal Computer Guide

If a line number is specified, or any statement containing a line number, there
must be a corresponding statement with that line number in the current stored program.

The CONT and DATA statements cannot appear in a program mode IF-THEN
statement.

If a FOR-NEXT loop follows the THEN, then the loop must be completely con-
tained on the IF-THEN line. Additional IF-THEN statements may appear following the
THEN as long as they are completely contained on the original IF-THEN line. However,
Boolean connectors are preferred to nested IF-THEN statements. For example, the two
statements below are equivalent, but the second is preferred.

18 IF A$ = "K" THEN IF E 2 THEM IF C > I THEM 5@

AND C > I THEN 5@

18 IF AF = "X" AND B = |

Example:

468 IF X > ¥ THEN A = 1

S@R IF M+l THEM AG = 4,5 GOSUE 1660
INPUT

The INPUT statement receives data input from the keyboard.

Format:

INPUT {EPlankl 2 l. var [var,. . .,var]

message .,

INPUT can be used in program mode only.

When the INPUT statement is executed, CBM BASIC displays a question mark
on the screen requesting data input. The user must enter data items that agree exactly,
in number and type, with the variables in the INPUT statement parameter list. If the
INPUT statement has more than one variable in its parameter list, then keyboard
entries must be separated by commas. The last entry must be terminated with a carriage
return:

71234 <CR> Single data item response
71234,567.89NOW <CR> Multiple data item response

If ““message’’ is present, it is displayed before the question mark. ‘‘message’’ can
have up to 80 characters.

If more than one but less than the required number of data items are input, CBM
BASIC requests additional input with double question marks (??) until the required
number of data items have been input. If too many data items are input, the message
SEXTRA IGNORED is displayed. The extra input is ignored, but the program con-
tinues execution.

Chapter 8: CBM BASIC 375

Example:
Statement Operator Response Result
1@ IMPUT A.B.C#¥ 123,456, NOW A=123, B=456, C$="NOW"
18 INFUT A.B.C# 7123 A=123
77456 B=456
27NOW CE="NOW"
1@ INPUT A.B.C# ZNOW
PREDO FROM START
?123 A=123
2456 B=456
27689 c="789"
1@ INPUT "A= ";A A= 7123 A=123

Note that you must input numeric data for a numeric variable, but you can input
numeric or string data for a string variable.

Caution: If the RETURN key is pressed in response to an INPUT statement with
no preceding data entry, then program execution ceases and the computer enters
immediate mode. To restart execution type CONT in response to the READY message.

INPUTH#

The Input External statement (INPUT#) inputs one or more data items from an
external device identified via a logical file number.

Format:

INPUT 2tIf varl,var,. . .,var]

The INPUT# statement inputs data from the selected external device and assigns
data items to variable(s) var. Data items must agree in number and kind with the
INPUT# statement parameter list.

If an end of record is detected before all variables in the INPUT# statement
parameter list have received data, then an OUT OF DATA error status is generated, but
the program continues to execute.

INPUT# and INPUT statements execute identically, except that INPUT#
receives its input from a logical file. Also, INPUT3# does not display error messages;,
instead it reports error statuses which the program must interrogate and respond to.

Input data strings may not be longer than 80 characters (79 characters plus a car-
riage return) because the input buffer has a maximum capacity of 80 characters. Com-
mas and carriage returns are treated as item separators by the computer when processing
the INPUT# statement; they are recognized, but are not passed on to the program as
data.

INPUT# is valid in program mode only.

Example:
1008 INPUTH#16.A Input the next data item from logical file 10. A numeric data item is
expected; it is assigned to variable A
246 IMFUT#12,R$ Input the next data item from logical file 12. A string data item is

expected; it is assigned to variable A$

588 INPUTH#5.E.C# Input the next two data items from logical file 5. The first data item
is numeric; it is assigned to numeric variable B. The second data
item is a string; it is assigned to string variable C$

376 PET/CBM Personal Computer Guide

LET=

The Assignment statement, LET=, or simply =, assigns a value to a specified
variable.

Format:

(blank)
LET % var=data

Variable var is assigned the value computed by resolving data.
The word LET is optional; it is usually omitted.

Example:
1@ A=2
450 C$="W"

308 M(1,3>=S6N(X)>
318 XX$(I1,J,K,L>="STRINGALONG"

LIST

LIST displays one or more lines of a program. Program lines displayed by the LIST
statement may be edited.

Format:

(blank)
line

LIST ¢ liney-liney
-line
line-

The entire program is displayed in response to LIST. Use line limiting parameters
for long programs to display a section of the program that is short enough to fit on the
screen.

Example:
LIST List entire program
LIST 5@ List line 50
LIST 60-1608 List all lines in the program from lines 60 to 100, inclusive
LIST -148 List all lines in the prcgram from the beginning of the program
through line 140
LIST 2e000- List all lines in the program from line 20000 to the end of the program

Listed lines are reformatted as follows:

1. ?'s entered as a shorthand for PRINT are expanded to the word PRINT.
Example:

A becomes PRINT A
2. Blanks preceding the line number are eliminated. Example:

50 A=1 becomes 50 A=1
100 A=A+1 becomes 100 A=A+1

3. A space is inserted between the line number and the rest of the statement if
none was entered. Example:

55A=B-2 becomes 55 A=B-2

Chapter 8: CBM BASIC 377

4. The line is displayed beginning at column 2 instead of column 1.

LIST is always used in immediate mode. A LIST statement in a program will list
the program, but then exit to immediate mode. Attempting to continue program execu-
tion via CONT simply repeats the LIST indefinitely.

Printing a Program Listing

To print a program listing instead of displaying it, OPEN a printer logical file and
execute a CMD statement before executing the LIST statement. Here is the necessary
immediate mode sequence:

OPEN 4.4 Open the printer specifying logical file 4

CMD 4 Deflect display output to the printer

LIST Print the program listing

PRINT#4 ;

CLOSE 4 Deflect output back to the display
LOAD

The LOAD statement loads a program from an external device into memory.
(Also see DLOAD.)

Cassette Unit Format:
LOAD [“filename"][,dev]

The LOAD statement loads into memory the program file specified by filename
from the cassette unit selected by device number dev. If no device is specified then
device 1 is assumed by default; cassette unit 1 is then selected. If no filename is given
then the next file detected on the selected cassette unit is loaded into memory.

For cassette unit operating instructions see Chapter 2.

Example:

LORD Load into memory the next program found on cassette unit 3 1. If
you start @ LOAD when the cassette is in the middle of a program,
the cassette will read past the remainder of the current program,
then load the next program

LORD "".,2 Load into memory the next program found on cassette unit ¥ 2

LORD "EGOR" Search for the program named EGOR on tape cassette ¥ 1 and load

it into memory.
N$="WHEE!LS" Search for the program named WHEEILS on cassette unit ¥ 1 and
LORD N¥ load it into memory.
LOAD "x*" Search for a program named X on cassette unit ¥ 1 and load it
into memaory

378 PET/CBM Personal Computer Guide

Diskette Drive Format:
LOAD “‘dr:filename’’ dev

The LOAD statement loads into computer memory the program file with the
name filename on the diskette in drive dr. dev. The device number for the diskette drive
unitis the value 8 in all standard CBM computer systems. If dev is not present, then the
default value is 1 which selects the primary tape cassette unit.

A single asterisk can be included instead of the filename, in which case the first
program found on the selected diskette drive is loaded into memory.

For diskette operating instructions see Chapter 2.

Example:

LORD"O %", & Load the first program found on disk drive O

LOAD"@:FIREBALL" .8 Search for the program named FIREBALL on disk drive 0, and load it
into memory

T#="8:METEOR" Search for the program named METEOR on disk drive O and load it
LORD T%$.3 into memory

When a LOAD is executed in immediate mode, CBM BASIC automatically
executes a CLR before the program is loaded. Once a program has been loaded into
memory, it can be listed, updated, and/or executed.

The LOAD statement can also be used in program mode to build program over-
lays. A LOAD statement executed from within a program causes that program’s execu-
tion to stop and another program to be loaded. In this case the CBM computer does not
perform a CLR; therefore the old program can pass on all of its variable values to the
new program.

When a LOAD statement accessing a cassette unit is executed in program mode,
LOAD message displays are suppressed unless the tape PLAY key is up (off). If the
PLAY key is off, the PRESS PLAY ON TAPE 31 message is displayed so that the load
can proceed. All LOAD messages are suppressed when loading programs from a dis-
kette in program mode.

Using LOAD to Display the Diskette Directory

The BASIC 4.0 DIRECTORY statement displays diskette directories. To display
the diskette directory using earlier releases of BASIC, you must load and list a program
file name $0 (for the diskette in drive 0) or $1 (for the diskette in drive 1).

Example:

LOAL "$@".8
SEARCHING FOR 3@
LORDING

RERDY

LIST

Chapter 8: CBM BASIC 379

NEW

The NEW statement clears the current program from memory.

Format:
NEW

When a NEW statement is executed, all variables are initialized to zero or null
values and array variable space in memory is released. The pointers that keep track of
program statements are reinitialized, which has the effect of deleting any program in
memeory; in fact the program is not physically deleted. NEW operations are automat-
ically performed when a LOAD statement is executed.

If there is a program in memory, then you should execute a NEW statement in
immediate mode before entering a new program at the keyboard. Otherwise the new
program will overlay the old one, replacing lines if their numbers are duplicated, but
leaving other lines. The result is a scrambled mixture of two unrelated programs.

Example:
NEK

NEW is always executed in immediate mode. If a NEW statement is executed
from within a program, the program will *‘self destruct;” it will clear itself out.

ON...GOSUB

The ON..GOSUB statement provides conditional subroutine calls to one of
several subroutines in a program, depending on the current value of a variable.

Format:
ON byte GOSUB line; [.line2,. . line,]

ON...GOSUB has the same format as ON...GOTO. See the ON...GOTO statement
description for branching rules. byte is evaluated and truncated to an integer number, if
necessary.

For byte=1, the subroutine beginning at line, is called. That subroutine com-
pletes execution with a RETURN statement which causes program execution to con-
tinue at the statement immediately following ON...GOSUB. If byte=2, the subroutine
beginning with line, is called, etc.

ON...GOSUB is normally executed in program mode. It may be executed in
immediate mode as long as there are corresponding line numbers to branch to in the
current stored program.

Example:
18 ON A SOSUB 188, 200, 308

380 PET/CBM Personal Computer Guide

ON..GOTO

The ON...GOTO statement causes a conditional branch to one of several points in
a program, depending on the current value of a variable.

Format:

ON byte GOTO line4 [.line,,...line]

byte is evaluated and truncated to an integer number, if necessary.

If byte=1, a branch to line number line, occurs. If byte=2, a branch to line num-
ber line, occurs, etc.

If byte=0, no branch is taken. If byte is in the allowed range but there is no cor-
responding line number in the program, then no branch is taken. If a branch is not
taken, program control proceeds to the statement following the ON...GOTO; this state-
ment may be on the same line as the ON...GOTO (separated by a colon), or on the next
line.

If index has a non-zero value outside of the allowed range, the program aborts
with an error message. As many line numbers may be specified as will fit on the 80-
character line.

ON...GOTO is normally executed in program mode. It may be executed in
immediate mode as long as there are corresponding line numbers in the current stored
program that may be branched to.

Example:
450 A=E{18 Branch to statement 100 if A is true (-1) or branch to
S@ OM A+2 GOTO 10@.2eq statement 200 if A is false (0)
SHoE=HeL Branch to statement 500 if X=1, to statement 600 if X=2,
8 OH ¥ GOTO S0.5008. 708 or to statement 700 if X=3. No branch is taken if X>3.

The OPEN statement opens a logical file and readies the assigned physical device.
(Also see DOPEN.)

Cassette Tape Format:
OPEN 1f{,dev}(,sall,” filename"’]

The file named filename on the tape cassette unit identified by dev is opened for
the type of access specified by the secondary address sa; the access is assigned the logical
file number If.

If no filename is specified then the next file encountered on the selected tape
cassette is opened. If no device is specified then device number 1 is selected by default;
this device number selects cassette unit 1. If no secondary address is specified then a
default value of 0 is assumed and the file is opened for a read access only. A secondary
address of 1 opens the file for a write access while a secondary address of 2 opens the file
for a write access with an end-of-tape mark written when the file is subsequently closed.

Chapter 8: CBM BASIC 381

Example:
QFEN 1 Open logical file 1 at cassette drive % 1 (default) for a read access (default)
from the first file encountered on the tape (no filename specified)
OPEN 1.1 Same as above
OFEN 1.1.8 Same as above
OPEM 1.1.8."DRT" Same as above but access the file named DAT
OFEN 3,1.2 Open Jogical file 3 for cassette % 1, for a write with EOT (End Of

Tape) access. The new file is unnamed and will be written at the
current physical tape location

OFEN 2,1.2."PENTAGRAM" Same as above but access the file named PENTAGRAM

Disk Unit Format:

OPEN If,dev,sa, *‘dr:filename,typel,access]”

The file named filename on the diskette in drive dr is opened and assigned logical
file number If. type identifies the file as sequential (SEQ), program (PRG), or random
(USR). If the file is sequential then access must be WRITE to specify a write access or
READ to specify a read access. access is not present for a program or random access file.

An existing sequential file can be opened for a write access if dr is preceded by an
@ sign. The existing sequential file contents are replaced entirely by new written data.

dev, the device number, must be present; it is 8 for all standard disk units. Ifdevis
absent then a default value of 1 is assumed and the primary tape cassette unit is selected.

For a data file the secondary address sa can have any value between 2 and 14,
however every open data file should have its own unique secondary address. A sec-
ondary address of 15 selects the disk unit command channel. Secondary addresses of 0
and 1 are used to access program files. Secondary address 0 is used to load a program
file; secondary address 1 is used to save a program file.

Example:
OPEN 1.,8,2,"8:DAT, 3EQ. RERD" Open logical file 1 on a diskette in drive 0. Read from
sequential file DAT
OPEN 5.8,3."1:NEWFILE,SEG, WRITE" Open logical file 5 on a diskette in drive 1. Write to

sequential file NEWFILE
OPEN 4.8.4,"@1 :NEWFILE,SEQ.WRITE" Open logical file 4 on diskette drive 1. Write to
sequential file NEWFILE replacing prior contents

See Chapter 6 for a discussion of files and file handling.

POKE

The POKE statement stores a byte of data in a specified memory location.

Format:
POKE memadr,byte

A value between 0 and 255, provided by byte, is loaded into the memory location
with the address memadr.

Example:

18 POKE 1.A POKE value of variable A into memory at address 1

POKE 32768.ASC("R")-64 POKE 1 (the value of ASC (“A’’)-64) into memory at address
32768

382 PET/CBM Personal Computer Guide

PRINT

The PRINT statement displays data; it is also used to print to the line printer.

Format:
{PRNTY Gatal { - f ata. o} datal

Print Field Formats:

Numeric fields are displayed using standard numeric representation for numbers
greater than 0.01 and less than or equal to 999999999. Scientific notation is used for
numbers outside of this range. Numbers are preceded by a sign character and are
followed by a blank character:

sign blank

1 number l

SNNN..NN b
—— A ————

Numefic field
display

The sign is blank for a positive number and minus sign (—) for a negative number.
Strings are displayed without additions or modifications.

PRINT Formats:

First data item. The first data item is displayed at the current cursor position. The
PRINT format character (comma or semicolon) following the first data item specifies
the location of the second data item’s display. The location of each subsequent data
item’s display is determined by the punctuation following the preceding data item. Data
items may be in the same PRINT statement, or in a separate PRINT statement.

New line. When no comma or semicolon follows the last data item in a PRINT
statement, a carriage return occurs after the last data item is displayed.

Tabbing. A comma following a data item causes the next data item to be displayed
at the next default tab column. Default tabs are at columns 1, 11, 21 and 31 for a 40 col-
umn display, continuing at 41, 51, 61 and 71 for an 80 column display. If a comma pre-
cedes the first data item, then a tab will precede the first item display.

Continuous. A semicolon following a data item causes the next display to begin
immediately, in the next available column position. Numeric data always has one trail-
ing blank character. For string data, items are displayed continuously with no forced
intervening spaces.

Example:
48 PRINT A
4¢ PRINT H.B.C
4@ PRINT A:B;C
48 PRINT. A:B;C
49 PRINT "WUMBERS".A.B.C
48 PRINT "NUM";"BER":
41 PRINT "S".A;RB.C

Chapter 8: CBM BASIC 383

PRINT#

The Print External statement (PRINT#) outputs one or more data items from the
CBM computer to an external device (cassette tape unit, disk unit, or printer) identified
by a logical file number.

Format:

PRINT #If data;c$,data;c$....data

Data items listed in the PRINT# statement parameter list are written to the exter-
nal device identified by logical unit number 1f.

Very specific punctuation rules must be observed when writing data to external
devices. A brief summary of punctuation rules is given below but for complete details
see Chapter 6.

PRINT3# Output to Cassette Files

Every numeric or string variable written to a cassette file must be followed by a
carriage return character. This carriage return character is automatically output by a
PRINTH# statement that has a single data item in its parameter list. But a PRINT# state-
ment with more than one data item in its parameter list must include c$ characters that
force carriage returns. For example, use CHR$(13) to force a carriage return, or a string
variable which has been equated to CHR$(13) wherever ¢$ appears.

PRINT# Output to Diskette Files

The cassette output rules described above apply also to diskette files with one
exception: groups of string variables can be separated by comma characters
(CHR$(44)). The comma character separators, like the carriage return separators, must
be inserted using c$. String variables written to diskette files with comma character sepa-
rators must subsequently be read back by a single INPUT# statement. The INPUT#
statement reads all text from one carriage return character to the next.

PRINT3t Output to the Line Printer

When the PRINT# statement outputs data to a line printer ¢$ must equal
CHRS$(29). No punctuation characters should separate c$ from data items as illustrated
in the PRINT= format definition.

Caution: The form ? #cannot be used as an abbreviation for PRINT#.

Using BASIC <3.0, the PRINT# statement terminates every line output with a
carriage return character. Using BASIC 4.0, this occurs only for file numbers of 127 or
less, no automatic carriage return is output. Some non-Commodore printers require a
carriage return character to be output at the end of a line. If you have such a printer,
then using BASIC 4.0, choose a file number greater than 127, or output the carriage
return as a separate terminating character.

384 PET/CBM Personal Computer Guide

Example:
108 FRINT#1.A Output numeric variable A and a RETURN code to logical file 1
20@ PRINT#4.A$ Output string variable A$ and a RETURN code to logical file 4

300 PRINT#10,BX.".":C$ Output numeric variable 8%, a comma, string variable C$, and a
RETURN code to logical file 10

18 OFEN 1.1.,2 Open logical file % 2 on cassette ¥ 1 for write
20 PRINT#{, "HI" Output HI to logical file % 1 on cassette # 2

The PRINT# statement also performs a variety of disk-handling operations.
These uses of PRINT# are summarized below. BASIC 4.0 has individual statements
that perform the same operations.

Disk files must be closed before being subject to any disk-handling operation.

COPY

Use PRINTH to copy and/or merge files. (Also see BASIC 4.0 COPY and CON-
CAT statements.

Format:
PRINT 3If,' ClOPYId:destfile=s:sourcefile[,s:sourcefile...]”

Up to four source files can be concatenated and copied to a destination file. The
source files are not changed. The source files are identified by their file name sourcefile
and drive s. If more than one source file is specified then files are concatenated in the
order in which they appear in the PRINT# statement. The newly created destination file
is identified by its file name destfile and drive d.

Example:
OPEN 1.8.15 Open the diskette command channel
PRINT#1,"Ci1 :FILE1=CO:FILEQ" Copy FILEO on drive O to a new file named

FILE? on drive 1

PRINT#1."CO:NEWFIL=C1:FILER,C@ FILEB" A new file named NEWFIL is created on
drive O by concatenating file FILEB on
drive O at the end of file FILEA on drive 1

DUPLICATE

Use PRINT# to duplicate a diskette and thus generate a backup copy of it. (See
also the BASIC 4.0 BACKUP statement.)

Format:
PRINT #if,”D{UPLICATEld=s"

The diskette in drive d becomes a duplicate of the diskette in drive s. Diskette
name and number are copied, along with all data files.

Before duplicating a diskette it is wise to put write protect tabs on the diskette
which is to be duplicated. Then if you put diskettes in the wrong drives, or if you mix the
source and destination drive numbers in the PRINT# statement, you will simply get a
diskette write error; you will not wipe out the diskette that you were trying to duplicate.

Chapter 8: CBM BASIC 385

Example:
(PEN 1.8.15 Open the diskette command channel
PRINT#1."Do=1" The diskette in drive 1 is duplicated; the duplicate is
. generated in drive O
PRINT#1. "DUPLICATEB=1" Same as above

INITIALIZE

Use PRINT# to initialize a diskette before performing any operation on it. You do
not need to initialize diskettes if you are using a DOS release 2.0 or higher, and BASIC
4.0.

Format:

PRINT #file,”\[NITIALIZE][dr]

The diskette in drive dr is initialized. If the dr parameter is not present, diskettes
in both drives are initialized.

Versions of DOS preceding release 2.0 require diskettes to be initialized before
any file on the diskette is opened. BASIC 3.0 and earlier versions were used with these
revisions of DOS. DOS 2.0 and subsequent releases automatically initialize diskettes
when they are loaded into drive. BASIC 4.0 should be used with DOS 2.0 and subse-
quent releases.

You do not need to initialize a diskette after preparing it; the preparation process
also initializes the diskette.

Example:
OPEN 1.8,13 Open the diskette command channel
PRINT#1."I" Initialize diskettes in drives O and 1
FRINT#1."INITIALIZEL" Initialize the diskette in drive 1
NEW

Use PRINT# to prepare and format a new diskette, or to erase and reformat an
old diskette. (See also the BASIC 4.0 HEADER statement.)

Format:
PRINT 31f, 'N[EWI]dr:diskname,vv'

The diskette in drive dr is prepared. When a diskette is prepared, sectors are laid
out on the diskette surface. The diskette directory and Block Availability Map (BAM)
are initialized. The diskette is assigned the name diskname and the number vv.

The diskette name and number is displayed in the reverse field at the top of a
directory display.

Example:
OFEM 1.8.15 Open the diskette command channel
PRINT#1, "MO:NEWDRTA. BZ" A diskette has been prepared for use in drive O. The diskette is given

the name NEWDATA and the number 02

386 PET/CBM Personal Computer Guide

When preparing an old diskette, you can specify a new diskette name, while keep-
ing the old diskette number; or you can keep the old diskette name and number. For
example, suppose a diskette has the name NEWDATA and the number 02. The follow-
ing preparation statements are legal:

OFEN 1.8.13 Open the diskette command channel

PRINT#1. "HEW@" Prepare an old diskette in drive 0. Keep its old name and number.

PRINT#1., "Nl NEWDISK" Prepare an old diskette in drive 1. Rename the diskette
NEWDATA but keep the old diskette number

PRINT#1. "H1 NEWDATA. @1" As above but give the diskette the number o1

The following statement is illegal:

FRINT#1. "HC: 82"

This statement is attempting to give the old diskette a new number while keeping the old
name.

RENAME

Use PRINT# to rename a diskette file. (See also the BASIC 4.0 RENAME state-
ment.)

Format:

PRINT #1f," RIENAME]dr:newname=oldname"’

A file on the diskette in drive dr has its name changed from oldname to newname.

Example:

OFEM 1.8.15 Open the diskette command channel

FRINT#1. "R1:BRCKUP=CURRENT" The file on the diskette in drive 1 which was named
CURRENT is renamed BACKUP

SCRATCH

Use PRINT# to scratch one or more files on a diskette. (See also the BASIC 4.0
SCRATCH statement.)

Format:
PRINT #1f,”"Sdr:filenamel,dr filenamel”*

A single PRINT# statement can delete one file, many files or all files, on a single
diskette, or on both diskettes.

To scratch one or more files, specify the drive number and file name for each file
that is to be scratched.

When a number of similarly named files are to be scratched, use the asterisk (*)
and question mark (?) characters to name the files.

The asterisk (*) is used to scratch a number of files whose names have the same
beginning characters. Enter the common beginning file name characters, followed by an
asterisk. For example the name ‘‘FILE*"" will scratch all files whose names begin with
the four letters FILE. The name *“F*** will scratch all files whose names begin with the
letter F. The name **+*" will scratch all files on the diskette. The asterisk (*) may be used
in the same way to specify names for OPEN, DOPEN and DLOAD statements.

Chapter 8: CBM BASIC 387

Use the question mark (?) in file name character positions that are allowed to
differ. For example the name “FILE?.SRC”’ will scratch all files named “FILEX.SCR”
where X can be any character. The name ““F???NQ”’ will scratch any file whose name
begins with an F, ends with NO and has any three characters in between. The name
F??9N=* will scratch any file whose name has an F in the first character position and an N
in the fifth character position.

Example:

OFEW 18,15 Open the diskette command channel

SRINT#1. "S@ FILENAME® Scratch the file on drive O named FILENAME

SRIMTH#1. "S53 FILEMAME. 1 'HEMFILE" As above but also scratch the file on drive 1 named NEWFILE

SRINTH#1. S0 FILEHAME. & HEL#®" As above but also scratch all files on drive O whose
names begin with the letters NEW

SRIMTHL " oRTYEY Scratch all files on drive 1 whose names begin with A and
have a total of 4 characters in the name

FRIMTHL, "SEH %" Scratch all files on the diskette in drive O

Use PRINT# to validate a diskette. (See also the BASIC 4.0 COLLECT state-
ment.)

Format:
PRINT #If,"' VIALIDATE][dr]”

The diskette in drive dr is validated. If the dr parameter is absent, then the dis-
kette in the most recently selected drive is validated.

When a diskette is validated, a new Block Availability Map is created for all valid
data files on the diskette. Any files that were improperly closed, or were not closed
become invalid files; they are deleted from the diskette and their diskette space is
released.

Do not validate a diskette that contains random access files; validation will erase
the random access file.

If a read error occurs during validation, the validation operation is aborted and the
diskette is left in its initial state.

A diskette must be initialized after it is validated.

Example:
OFEH 1.8.15 Open the diskette command channel
“RIWT#L, "Ia" Initialize the diskette in drive O

SRINTHT, "WE" Validate the diskette in drive O

388 PET/CBM Personal Computer Guide

READ

The READ statement assigns values from a DATA statement to variables named
in the READ parameter list.

Format:

READ var[,var,. . .,var]

READ is used to assign values to variables. READ can take the place of multiple
assignment statements (see LET=).

READ statements with variable lists require corresponding DATA statements
with lists of constant values. The data constants and corresponding variables have to
agree in type. A string variable can accept any type of constant; a numeric variable can
accept only numeric constants.

The number of READ and DATA statements can differ, but there has to be an
available DATA constant for every READ statement variable.

There can be more data items than READ statement variables, but if there are too
few data items the program aborts with an ?0OUT OF DATA error message.

READ is generally executed in program mode. It can be executed in immediate
mode as long as there are corresponding DATA constants in the current stored program
to read from.

Example:

On completion, A=1, B=2, C=3

gl

ol
Lo MG

On completion, C8="STR", D=14.5, F§="TM"

[N e

= 1T A

F
TR =T
TH 14, SonTHn

i)
-

RECORD (BASIC 4.0)

The RECORD statement adjusts a relative file pointer to select any byte
(character) of any record in the relative file. The RECORD statement is used before
GET#, INPUT# or PRINT# statements.

Format:
RECORD #If,rnol,bnol

The RECORD statement selects byte number bno in record rno of the file iden-
tified by logical file If.

If the RECORD statement sets the file pointer beyond the end of the file, and a
PRINT# statement attempts to write another record, the file is extended to include
these additional records. If an INPUT3# statement is executed after the RECORD state-
ment has set the record pointer beyond the last record, INPUT3# will return null data
and an end of file status is generated in ST, the status word variable.

Example:

1@ DOPEM#1. "DATAFILE".LZ@, & REM RELATIVE FILE DATAFILE HAS 2% EYTES FER RECORD
26 RECORDH#L. 28,50 RENM LECT THE £7H EYTE RECORD Ha. 28

0 GETH#1.RE: IF A$= THEW =8 REM LOAD THIS EYTE IMTO A%

48 STOP

Chapter 8: CBM BASIC 389

REM

The Remark statement (REM) allows comments to be placed in the program for
program documentation purposes.

Format:
REM comment
where:

comment is any sequence of characters that will fit on the current 80 column line.

REM statements are reproduced in program listings, but they are otherwise
ignored. A REM statement may be placed on a line of its own or it may be placed as the
last statement on a multiple statement line.

A REM statement cannot be placed ahead of any other statements on a multiple-
statement line, since all text following the REM is treated as a comment.

REM statements may be placed in the path of program execution, and they may
be branched to.

Example:

18 FEM ### & & & & & & & # & & % ¥ ¥ & & S#¥¥
H REM #$$FROGEAN EXCAL TEUR$##
GOTO SSoREM ERAMCH IF OUT OF IATH

i

RENAME (BASIC 4.0)

The RENAME statement changes the name of a file on a diskette without altering
the file. (See also PRINT# RENAME))

Format:
RENAME(dr}'oldname’” TO ‘‘newname’’[ON Uzl

The file named oldname on the diskette in drive dr has its name changed to
newname. If dr is absent, drive 0 is assumed.

If you have any trouble renaming a file, try to validate the file, then rename it.

Caution: A file must be closed before it is renamed.

Example:
REMAME "PET" TO "CEMT Rename PET file on drive O. The new file name is CBM
SEHAME D1. "OHE" TO "THD" Rename ONE file on drive 1. The new file name is TWO
RESTORE

The RESTORE statement resets the DATA statement pointer to the beginning of
data.

Format:
RESTORE

RESTORE may be given in immediate or program mode.

390 PET/CBM Personal Computer Guide

Example:

A=1, B=2, B$="N44"

X=1, Y=2, Z8="N44"

RETURN

The RETURN statement branches program control to the statement in the pro-
gram following the most recent GOSUB call. Each subroutine must terminate with a
RETURN statement.

Format:
RETURN

Example:

180 RETURN

Note that the RETURN statement returns program control from a subroutine,
whereas the RETURN key moves the cursor to the beginning of the next display line.
The two are not related in any way.

RUN

RUN begins execution of the program currently stored in memory. RUN closes
any open files, and initializes all variables to 0 or null values.

Format:
RUN(line}

When RUN is executed in immediate mode, the CBM computer performs a CLR
of all program variables and resets the data pointer in memory to the beginning of data
(see RESTORE) before executing the program.

If RUN specifies a line number, the CBM computer still performs the CLR and
RESTORE:s the data, but execution begins at the specified line number.

RUN specifying a line number should not be used following a program break —
use CONT or GOTO for that purpose.

The RUN may also be used in program mode. It restarts program execution from
the beginning of the program with all variables cleared and data pointers re-initialized.

Example:
M Initialize and begin execution of the current program

SUH 1D Initialize and begin execution of the program starting
at line 1000

Chapter 8: CBM BASIC 391

SAVE

The SAVE statement writes a copy of the current program from memory to an
external device. (Also see DSAVE.)

Cassette Unit Format:

SAVE ["filename”][,dev]{,sal

The SAVE statement writes the program which is currently in memory to the tape
cassette drive specified by dev. If the dev parameter is not present then the assumed
value is 1 and the primary cassette drive is selected. The filename, if specified, is written
at the beginning of the program. If a non-zero secondary address (sa) is specified, then
an end of file mark is written on the cassette after the saved program.

Although none of the SAVE statement parameters are required when writing to a
cassette drive, it is a good idea to name all programs. A named program can be read off
cassette tape either by its name, or by its location on the cassette tape. A program with
no name can be read off cassette tape by its location only.

The SAVE statement is most frequently used in immediate mode, although it can
be executed from within a program.

For cassette operating instructions when using the SAVE statement see
Chapter 2.

Example:

SAYE Write the current program onto the cassette in drive 1,
leaving it unnamed

SHVE URED Write the current program onto the cassette in drive 1,
assigning the file name of RED

FE="FED" Same as above

SHYE A

SHYE "BLACKEJACE" . 2.1 Write the current program onto the cassette in drive 2

naming the program BLACKJACK. Write and end of
file mark after the program

Diskette Drive Format:

SAVE “‘dr:filename’’,dev

The SAVE statement writes a copy of the current program from memory to the
diskette in the drive specified by dr. The program is given the name filename. dev must
be present; in all standard CBM computer systems it has the value 8. If dev is absent, a
default value of 1 is assumed and the primary cassette is selected.

The file name assigned to the program must be new. If a file with the same name
already exists on the diskette, a syntax error is reported. However a program file can be
replaced; if an @ sign precedes dr in the SAVE statement text string, then using DOS 2.0
or higher, the program replaces the contents of a current file named filename.

The diskette SAVE statement is also used primarily in immediate mode although
it can be executed out of a program.

For diskette operating instructions see Chapter 2.

392 PET/CBM Personal Computer Guide

Example:
SAYE "8 BLACKIACKE" .2 Write the current program to the diskette on drive O and name the
program file BLACKJACK
SEVYE "RECBLACEJACK" . & Write the current program to the diskette on drive 0, replacing prior

contents of program file BLACKJACK

SCRATCH (BASIC 4.0)

The SCRATCH statement erases a single file from a diskette. (Also see PRINT#
SCRATCH.)

Format:
SCRATCH [Dd), “filename” [ON Uz}

The file named filename on the diskette in drive d is deleted. If the Dd parameter
is not present, drive 0 is assumed.

The SCRATCH statement is used in immediate mode and in program mode. In
immediate mode the statement is used to perform general diskette housekeeping opera-
tions. When executed the message ARE YOU SURE? is displayed. You must key the
response YES <CR> or Y <CR>, or the file will not be scratched.

When the SCRATCH statement is executed out of a program, no prompt
messages are displayed. Temporary data files are frequently created by a program to hold
transient data that will not fit in available memory. Temporary data files should be
scratched before the program completes execution; otherwise a FILE EXISTS syntax
error will be generated when the program is run next.

Files must be closed before they are scratched. If you attempt to scratch an open
file the CBM computer may perform complex, erroneous diskette operations.

If using DOS 2.0 it is a good idea to COLLECT the diskette in immediate mode
before scratching any files (see COLLECT).

Example:
SCRATCH Da, DUy Scratch file DUMMY 1 on diskette drive O
SCRATOH UMMy L Same as above

SCRATCH D1 "FILELY Scratch FILE1 on diskette drive 1

STOP

The STOP statement causes the program to stop execution and return control to
CBM BASIC. A break message is displayed on the screen.
Format:

sTOP
Example:

255 STO0F Will cause the message BREAK IN 655 to be displayed

Chapter 8: CBM BASIC 393

VERIFY

The VERIFY statement compares the current program in memory with the con-
tents of a program file.

Cassette Unit Format:

VERIFY [(filename’"][,dev]

The program currently in memory is compared with the program named filename
on the cassette in the unit specified by dev. If dev is not present, a default of 1is
assumed and cassette unit 1 is selected. If filename is not present, the next file on the
cassette in the selected unit is verified.

You should always verify a program immediately after saving it.

The VERIFY statement is almost always executed in immediate mode. For
cassette operating instructions see Chapter 2.

Example:
VERIEY Verify the next program found on the tape
VERIFY "CLIRY Search for the program named CLIP on cassette unit 3 1, and verify it
SE="CLIFY Same as above
VERIFY R¥

Diskette Drive Format:
VERIFY ‘‘dr:filename’’ ,dev

The program currently stored in memory is compared with the program file
named filename on the diskette in drive dr. The dev parameter must be present and in
all standard CBM computer systems it must have the value 8. If the dev parameter is
absent a default value of 1 is assumed and the primary cassette drive is selected.

In order to verify the program most recently saved, use the following version of
the VERIFY statement:

WERIFY "#v, 2

You should always verify programs as soon as you have saved them.
The VERIFY statement is nearly always executed in immediate mode. For
diskette operating instructions see Chapter 2.

Example:
VERIFY "#". 3 Verify the program just saved
WERIFY @ SHELL".2 Search for the program named SHELL on disk drive O, and verify it
CE=r@EcSHELL" Same as above
VERIFY CF

394 PET/CBM Personal Computer Guide

WAIT

The WAIT statement halts program execution until a specified memory location
acquires a specified value.

Format:

WAIT memadr, maskl,xor]

where:
mask is a one-byte mask value
xor is a one-byte mask value

The WAIT statement executes as follows:

1. The contents of the addressed memory location are fetched.

2. The value obtained in step 1 is Exclusive-ORed with xor, if present. If xor is
not specified, it defaults to 0. When xor is 0, this step has no effect.

3. The value obtained in step 2 is ANDed with the specified mask value.

If the resuit is 0, WAIT returns to step 1, remaining in a loop that halts pro-
gram execution at the WAIT.

5. If the result is not 0, program execution continues with the statement follow-
ing the WAIT statement.

The STOP key will not interrupt WAIT statement execution.

FUNCTIONS

CBM BASIC functions are described below in alphabetic order. Names and
abbreviations used are described at the beginning of this chapter.

A few functions are available only on CBM 8000 series computers; these func-
tions are described in the next section.

ABS

ABS returns the absolute value of a number. This is the value of the number with-
tions are described in the next section.

Format:
ABS(datan}

Example:
A=ARSC18Y Results in A=10
F=ARDO-180 Results in A=10

Chapter 8: CBM BASIC 395

ASC

ASC returns the ASCII code number for a specified character.
Format:
ASC(data$)

If the string is longer than one character, ASC returns the ASCII code for the first
character in the string. The returned argument is a number and may be used in
srithmetic operations. ASCII codes are listed in Appendix A.

Example:

CURT D Prints 65
B3

gy

Prints the ASCH value of ”'S", which is 83
ATN
ATN returns the arctangent of the argument.
Format:
ATN{datan)

ATN returns the value in radians in the range *17.

CHR$

CHRS returns the string representation of the specified ASCII code.

Format:
CHR$(byte)

CHRS can be used to specify characters that cannot be represented in strings.
These include a carriage return and the double quotation mark.

Example:

IF CF=CHREO1ZY GOTO 16 Branch if C$ is a carriage return (CHR$(13)}

TUHRE DS D THOHOHD" CCHRES 3G Print the eight characters “"HOHOHQ" (where CHR$(34)
represents a double quotation mark)

COS

COS returns the cosine of the argument.

Format:
COS(datan)

396 PET/CBM Personal Computer Guide

Example:

GG A is assigned the value 0.968912422

DS (BASIC 4.0)

Whenever the variable DS is referenced by any BASIC statement, an integer
number is returned specifying the status of the most recent disk access operation. See
Table 8-1 for DS interpretations.

Example:
ap IF DEoLB THEM FRINT “ERROR"STOR

DS$ (BASIC 4.0)

When the string variable named DS$ is referenced by any BASIC statement the
status of the most recent disk access is returned with the following format:

EE ERROR MESSAGE TT SS
——

——— S~

Sector

Track

Error message

Error number

See Appendix B for a summary of diskette error messages.

Example:

"

el

IF I

2@ THEW FRINT DEf STOF

v

If DS has a value of 1, a file has been scratched; any other value less than 20 is no
error.

EXP

EXP returns the value e®. The value of e used is 2.71828183.

Format:
EXP{argn)

argn must have a value in the range +88.029691. A number larger than
4+88.029691 will result in an overflow error message. A number smaller than
—88.029691 will yield a zero result.

Chapter 8: CBM BASIC 397

Example:

Prints 1

Prints 2.71828183

Results in EV=7.3890561

Results in EV=6.59105247E+21

Largest allowable number, yields 1.70141183E+38
Smallest allowable number, yields 5.87747176£-39

Out of range, overflow error message

Qut of range, returns O

FRE

FRE is a system function that collects all unused bytes of memory into one block
(called ‘‘garbage collection’’) and returns the number of free bytes.
Format:
FRE{arg)

arg is a dummy argument. It may be string or numeric.

FRE can be used anywhere a function may appear, but it is normally used in an
immediate mode PRINT statement.
Example:

TFRECL Institute garbage collection and print the number
of free bytes

INT

INT returns the integer portion of a number, rounding to the next lower signed
number.

Format:
INT {(argn)
For positive numbers, INT is equivalent to dropping the fractional portion of the
number without rounding. For negative numbers, INT is equivalent to dropping the

fractional portion of the number and adding 1. Note that INT does nor convert a floating
point number (5 bytes) to integer type (2 bytes).

Example:
A=THTOE, 50 Results in A=1
A=INTO-1.5% Results in A=-2
d=IMT -, 1 Results in X=~1

A caution here: Since floating point numbers are only close approximations of real
numbers, an argument may not yield the exact INT function value you might expect.
For instance, consider the number 3.89999999. The function *INT(3.89999999) would
yield a 3 answer, not 4 as would be expected:

FIMTOZ, 333395395

398 PET/CBM Personal Computer Guide

LEFTS
LEFTS returns the leftmost characters of a string.

Format:
LEFT$larg$.byte)

byte specifies the number of leftmost characters to be extracted from the arg$
character string.
Example:
LEFTE:"ARG" .20 Prints AR

SF=|EFT$/E$. 100 Prints leftmost ten characters of 83 string

LEN
LEN returns the length of the string argument.

Format:
LEN({arg$)
LEN returns 4 number that is the count of characters in the specified string.
Example:
TUEHE "RECTIEF Displays 6

SELEHTCE+DED Displays the sum of characters in strings C$ and D$

LOG

LOG returns the natural logarithm, or log to the base e. The value of e used is
2.71828183.

Format:
LOGargn)

An ILLEGAL QUANTITY ERROR message is returned if the argument is zero
or negative.

Example:
RN Prints O
A=LG. 180 Results in A=2.30258509
A=L00u LEG Results in A=13.8155106
A=l Ones LG 18y Calculates fog to the base 10

Chapter 8: CBM BASIC 399

MID$

MIDS returns any specified portion of a string.

Format:
MID$(data$ byte [byte,))

Some number of characters from the middie of the string identified by data$ are
returned. The two numeric parameters byte, and byte, determine the portion of the
string which is returned. String characters are numbered from the left, with the leftmost
character having position 1. The value of byte, determines the first character to be
extracted from the string. Beginning with this character, byte, determines the number of
characters to be extracted. If byte, is absent then all characters up to the end of the string
are extracted.

An ILLEGAL QUANTITY ERROR message is printed if a parameter is out of
range.

Example:
TMIDE "RRCDET . ZL 10 Prints B
THMIDECARCTE" Z Prints CD
SMITE "AECDEY . 30 Prints COE
PEEK

PEEK returns the contents of the specified memory location. PEEK is the func-
tion counterpart of the POKE statement.

Format:
PEEK (memadr}
Any memory location can be PEEKed except for system locations that contain the
BASIC interpreter. These locations have been PEEK-protected to discourage examina-

tion of proprietary software. The protected area returns a PEEK value of 0. Locations of
interest that you might want to PEEK at are discussed in Chapter 7.

Example:

TREEEC L Prints contents of memory location 1
;

POS

POS returns the column position of the cursor.

Format:
POS{data)

data is a dummy function: it is not used and therefore can have any value.

POS returns the current cursor position. If no cursor is displayed, the current
character position within a program line or string variable is returned. Character posi-
tions begin at 0 for the leftmost character.

400 PET/CBM Personal Computer Guide

For a 40 column display POS will return a value between 0 and 39. For an 80 col-
umn display POS will return a value between 0 and 79.

Recall that program logic processes 80 character lines even if a CBM computer has
a 40 character display. If program logic in such a computer is processing a character in
the second half of the line, the POS function will return a value between 40 and 79, even
though the computer only has a 40 character display.

By concatenation, string variables with up to 255 characters may be generated. If
program logic is processing a long string, then the POS function will return the character
position currently being processed. Under these circumstances the POS function will
return a value ranging between 0 and 255.

Example:
FROS LS At the beginning of a line, returns o
TORBCHECT S POSOL With a previous POS value of 0, displays a
POS value of 6

RIGHTS returns the rightmost characters in a string.

Format:
RIGHT $(arg$.byte)

byte identifies the number of rightmost characters that are extracted from the
string specified by arg$.

Example:
SIGHTH (ARG, 22 Displays RG
AME=RIGHT$ KE+"#" . 50 MMS is assigned the last four characters of X8, plus the
character %
RND generates random number sequences ranging between 0 and 1.
Format:
RND{argn} Return random number
RND{-argn) Store new seed number
Example:
A=RHDI-10 Store a new seed based on the value -1
BRI Ly Fetch the next random number in sequence

An argument of zero is treated as a special case; it does not store a new seed, nor
does it return a random number. RND(0) uses the current system time value TI to
introduce an additional random element into play.

A pseudo-random seed is stored by the function:

=HOC=TI0 Store pseudo-random seed

Chapter 8: CBM BASIC 401

RND(0) can be used to store a new seed that is more truly random, by using the
following function:

SHI RN s Store random seed

For a complete discussion of the RND function see Chapter 5.

SGN

SGN determines whether a number is positive, negative, or zero.

Format:
SGN(argn)

The SGN function returns + 1 if the number is positive, non-zero; 0 if the num-
ber is zero; —1 if the number is negative.

Example:
Displays -1
Displays O
Displays 1
GHu s
5 THEN FRINT "FPOEITIVE MUMEBER®
SIN
SIN returns the sine of the argument.
Format:
SIN (argn}
Example:
Displays the sine of 45 degrees

SPC moves the cursor right a specified number of positions.

Format:
SPClbyte)

The SPC function is used in PRINT statements to move the cursor some number
of character positions to the right. Text which the cursor passes over is not modified.

The SPC function moves the cursor rightward from whatever column position the
cursor happens to be at when the SPC function is encountered. This is in contrast to a
TAB function which moves the cursor to some fixed column measured from the left-
most column of the display. (See TAB for examples.)

402 PET/ BM Personal Computer Guide

SQR

SQR returns the square root of a positive number. A negative number returns an
error message.

Format:
SQR{argn)
Example:
Results in A=2
Results in A=2.2
Displays 1.2E+16
ST

ST returns the current value of the 170 status. This status is set t0 certain values
depending on the results of the last input/output operation.

Format:
ST

ST values are shown in Table 8-3.
Status should be checked after execution of any statement that accesses an exter-
nal device. See Chapter 6 for a complete discussion of 1/0 status.

Example:

@ GOTO SAR Branch on any error
4 THEM TUSHORT EBLOCE

VT
[

O e

STR$

STRS returns the string equivalent of a numeric argument.

Format:
STR$largn)

STRS returns the character string equivalent of the number generated by resolv-
ing argn.
Example:
AF=sTREC 14,60 Displays 14.6
THE

TETRECIED D Displays 100
TETRFCIELDD Displays 1E+10

Chapter 8: CBM BASIC

Table 8-3. ST Values for I/0O Devices

403

ST Bit ST Numeric Cassette Cassette Tape IEEE Devices
Position Value Tape Read Verify and Load Read/Write

0] 1 Time out write

1 2 Time out read

2 4 Short block Short block

3 8 Long block Long block

4 16 Unrecoverable Any mismatch

read error

5 32 Checksum error Checksum error

6 64 End of file EQI

7 ~-128 End of tape End of tape Device not present

SYS

SYS is a system function that transfers program control to an independent sub-
system.

Format:
SYSimemadr)

memadr is the starting address at which execution of the subsystem is to begin.
The value must be in the range 0<address<65535. SYS is described in Chapter 7.

TAB

TAB moves the cursor right to the specified column position.

Format:
TAB(argn)

TAB moves the cursor to the n+1 position, where n is the number obtained by
resolving argn.

Example:

These two examples show the difference between
SPC and TAB. SPC skips ten positions from
the last cursor location, whereas TAB skips to
the 10+ 1th position on the row

SR CERC L E

TORURRE D TAE LR e
CILIRE

Using the TAB Key

Recent CBM computers have a TAB key. This key can be used within a PRINT
statement’s text string to set tabs, clear tabs, or move the cursor right to the next tab
stop.

Tabs are set and cleared using the shifted TAB key, or the CHR$(9) function. A
tab is cleared if the cursor is in a column where a tab was previously set; a tab is set
otherwise.

Tabs may be set and cleared in immediate mode or in program mode. To set or
clear tabs in immediate mode simply move the cursor to the desired screen column then

404 PET/CBM Personal Computer Guide

press the shifted TAB key. In program mode execute a PRINT statement that moves the
cursor to the required column position, then execute a shifted tab character.

Up to 80 tabs may be set. Execution of a carriage return makes tab settings perma-
nent until cleared.

The unshifted TAB key or the CHR$(137) function moves the cursor right to the
next tab column.

Example:

The following example sets tabs at columns 15, 25, and 50, then displays the
words one, two, and three at these three column positions:

. T -‘!llllI'llllllllHllllk!lllnlhlllllllllllIllllllllllﬂ"
o0 T T LT ~RER

TAN
TAN returns the tangent of the argument.

Format:

TAN{argn)

Example:

Displays 0.0584738547

T, TI$
TI and TI$ represent two system time variables.

Format:

T Number of jiffies since current startup
TI$ Time of day string

Example:
B

Usages of Tl and TIS are described in Chapter 5, under **Setting Time of Day.”

USR

USR is a system function that passes a parameter to a user-written assembly
language subroutine whose address is contained in memory locations 1 and 2. USR also
fetches a return parameter from the subroutine.

Format:
USR{arg)

The USR function is described in more detail in Chapter 7.

Chapter 8: CBM BASIC 405

VAL

VAL returns the numeric equivalent of the string argument.

Format:
VAL (data$)

The number returned by VAL may be used in arithmetic computations.

VAL converts the string argument by first discarding any leading blanks. If the
first non-blank character is not a numeric digit (0-9), the argument is returned as a
value of 0. If the first non-blank is a digit, VAL begins converting the string into real
number format. If it subsequently encounters a non-digit character, it stops processing
so that the argument returned is the numerical equivalent of the string up to the first
non-digit character.

Example:

=R IIE
HH=WALCE

CBM 8000 EDITING FUNCTIONS

The CBM 8000 Computer also supports the following unique functions.

BELL
BELL rings the console bell of appropriately equipped CBM 8000 computers.

Format:
CHR$(7) or <ESC><RVS>g
The bell rings whenever BELL format characters appear in a PRINT statement
parameter list. The bell rings automatically on power-up, or when the cursor moves
through column 75 of the display. If the screen window has been narrowed using win-

dow scrolling functions, then the bell sounds when the cursor passes through the fifth
column from the right edge of the window.

Example:

188 PRIMT CHREET:

DELETE LINE (BASIC 4.0)

Delete a line on the display. Scroll up all text below the deleted line.

Format:
CHR$(21) or <ESC> <RVS>u

406 PET/CBM Personal Computer Guide

To delete a line include one of the formats illustrated above in a PRINT statement
parameter list. The line on which the cursor is currently located gets deleted. The line is
deleted on the display only, memory is not modified. This function should be used in
programs that create displays: it should not be used to erase data from memory.

Example:

SRIMTY SHOME»<CRERY <0 R SCCRSR

IR Delete the fourth display line

ERASE BEGIN

ERASE BEGIN erases all text on the current Cursor line from the beginning of the
line up to the cursor position.

Format:
CHR$(150) or <ESC> <RVS>V

To access the ERASE BEGIN function, oné of the formats iltustrated above must
appear in a PRINT statement parameter list. The display line on which the cursor is
located is erased from the beginning of the line up to the cursor position but memory is
not modified. This function should only be used in programs that are controlling screen
displays.

Example:

{EE FRINT TRECZED COHEFCLER Erase first 20 characters of line

ERASE END

ERASE END erases all text on the current cursor line from the cursor position up
to the end of the line.

Format:
CHR$(22) or <ESC><RVS>v

To access the ERASE END function, one of the formats iltustrated above must
appear in a PRINT statement parameter list. The display line on which the cursor is
located is erased from the cursor position up 1o the end of the line, but memory is not
modified. This function should only be used in programs that are controlling screen dis-
plays.

Example:
1an PRIMT TRECZE!N LD HREgZE Erase line starting at character 20
GRAPHIC
The GRAPHIC function changes the screen display from text to graphic charac
ters.
Format:

CHR${(142) or <ESC> <RVS>N

Chapter 8: CBM BASIC 407

The GRAPHIC function is enabled when one of the formats illustrated above is
encountered in a PRINT statement parameter list. The standard character set is selected
for those characters which have a graphic symbol. Also, spacing between lines is elimi-
nated to improve the quality of graphics.

The effect of the GRAPHIC function is cancelled by the TEXT function.

Example:

SRIMT CHE$O 1420 Select graphics display

INSERT LINE

The INSERT LINE function inserts one blank line at the cursor position on the
screen display.

Format:

CHR${149) OR <ESC> <RVS>m

A line is inserted in the screen display at the current cursor position when one of
the character formats illustrated above is encountered in a PRINT statement parameter
list. The display below the inserted line is scrolled down one line; the bottom display line
is scrolled off the screen.

The insert line function modifies the screen display but does not alter memory.
This function should be used only in programs that are creating and modifying displays.

Example:

SRINT CHOMELCCRSR ORGSR PICRSR VIESDIRMT Y Insert a line at display line 4

SCROLL DOWN AND SCROLL UP

These two functions scroll text down one line, or up one line within a display win-
dow.

Format:

Scroll Down: CHR$(153) or <ESC> <RVS>Q
Scroll Up: CHR${25) or <ESC><RVS>q

The SET BOTTOM and SET TOP functions can be used to define a window on the
CBM computer display. Within this window the SCROLL DOWN function will scroll
text down one line; a blank line appears at the top of the window, while the bottom line
of the window is scrolled off the screen. The SCROLL UP function scrolls text up one
line within the window, scrolling the top line off the screen, while a blank line is inserted
at the bottom of the window. These two functions are enabled when they appear in a
PRINT statement parameter list.

The SCROLL UP and SCROLL DOWN functions modify the display, but do not
change memory. These two functions should only be used in programs that create dis-
plays.

Example:

18 PREINT CHEZECZS Scroll up one line within window

408 PET/CBM Personal Computer Guide

SET BOTTOM AND SET TOP

These two functions define a window on the CBM computer display.

Format:

Set Bottom: CHR$(143)
Set Top: CHR${15)}

The SET BOTTOM function defines the bottom righthand corner of the screen.
The SET TOP function defines the top lefthand corner of the screen. In order to define
the window a PRINT statement parameter list must move the cursor to the required
bottom right and top left corners of the window and then execute the SET BOTTOM
and SET TOP functions respectively.

To cancel a window, execute a PRINT statement with two consecutive HOME
characters in its parameter list.

Example:

Suppose a display window is to be bounded by rows 5 and 15, and columns 10 and
60. The following PRINT statement would establish the required window:

©F T T sl TREC 1@ CHRE OIS0 e el TAE aECHRFCLAZD

\x)

Subsequently the following PRINT statement would cancel the window:

180 FRIMT “IHOMEL-THOME:"

TEXT

The TEXT function cancels the effect of the GRAPHIC function. Characters that
have a graphic symbol in the standard character set are switched to the alternate
character set representation.

Format:
CHR$(14) or <ESC> <RVS>n

The TEXT function is enabled by executing a PRINT statement with one of the
formats illustrated above in its parameter list.

Example:
1688 PRINT CHRE&C140 End graphics

	Chapter8.BMP
	Chapter80001.BMP
	Chapter80002.BMP
	Chapter80003.BMP
	Chapter80004.BMP
	Chapter80005.BMP
	Chapter80006.BMP
	Chapter80007.BMP
	Chapter80008.BMP
	Chapter80009.BMP
	Chapter80010.BMP
	Chapter80011.BMP
	Chapter80012.BMP
	Chapter80013.BMP
	Chapter80014.BMP
	Chapter80015.BMP
	Chapter80016.BMP
	Chapter80017.BMP
	Chapter80018.BMP
	Chapter80019.BMP
	Chapter80020.BMP
	Chapter80021.BMP
	Chapter80022.BMP
	Chapter80023.BMP
	Chapter80024.BMP
	Chapter80025.BMP
	Chapter80026.BMP
	Chapter80027.BMP
	Chapter80028.BMP
	Chapter80029.BMP
	Chapter80030.BMP
	Chapter80031.BMP
	Chapter80032.BMP
	Chapter80033.BMP
	Chapter80034.BMP
	Chapter80035.BMP
	Chapter80036.BMP
	Chapter80037.BMP
	Chapter80038.BMP
	Chapter80039.BMP
	Chapter80040.BMP
	Chapter80041.BMP
	Chapter80042.BMP
	Chapter80043.BMP
	Chapter80044.BMP
	Chapter80045.BMP
	Chapter80046.BMP
	Chapter80047.BMP
	Chapter80048.BMP
	Chapter80049.BMP

