Chapter 4

Programming the CBM

This chapter teaches you how to start writing your own BASIC programs.

BASIC is a programming language. BASIC, like any programming language,
consists of a set of statements, which you combine to create programs. A program
defines the task you want the computer to perform.

We could teach you BASIC by forcing you first to learn BASIC statements, one by
one. But you would probably give up, since individual statements are not very meaning-
ful. A study of individual BASIC statements quickly degenerates into learning a number
of arbitrary syntax rules that tell you nothing about programming or good programming
practice. Therefore rigorous definitions of all BASIC statements have been relegated
to Chapter 8. Look up individual statements in Chapter 8 when you need to, but do
not try to read Chapter 8 before you read this chapter.
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IMMEDIATE AND PROGRAMMED MODES

When the CBM computer is powered up it is in immediate mode. In immediate
mode you can use the CBM computer as you would a calculator; it executes BASIC
statements as soon as you press the RETURN key to signal the end of the statement
entry. Try these arithmetic examples:

74.5+6,42 Addition
14,32

FEADY.

7oea-41@ Subtraction
2@

READY.

e £ Multiplication
6. 28318531

REARDY.
rlee/ 3 Division
33.3333333

RERDY.
TE/2%4-1 Combination
11

Results are displayed immediately on the next line of the display.
In programmed mode the computer accepts and stores your entries, but does not
perform any operations until specifically instructed to do so by a RUN statement.

Programs and Statements

Each of the five immediate mode statements shown above is a miniature program.

A program provides the CBM computer with an exact and complete definition
of the task which the computer is to perform.

A program consists of one or more statements. In each of the five immediate
mode illustrations, the entire program consists of a single statement. These are trivial
cases. Most programs have tens, hundreds, or even thousands of statements.

Program Execution

A computer is said to execute a program (or RUN the program) when it per-
forms the operations which the program specifies.

An immediate mode program is executed as soon as you press the RETURN key.

In programmed mode you must issue a special RUN statement to execute a pro-
gram; we described the RUN statement in Chapter 1.

Program Lines

In programmed mode every program line has a unique line number. The CBM
computer assumes an immediate mode program if the line does not begin with a line
number.

A program line can be up to 80 characters long. On an 80-column display,
therefore, a program line corresponds to a display line. On a 40-column display a pro-
gram line is equivalent to two display lines.
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If a program line is less than 80 characters long, then it is terminated when you
press the RETURN key. The CBM computer lets you continue beyond the 80th
character, but subsequently the line does not execute correctly. To be safe you should
end every line before the 80th character by pressing the RETURN key.

A line can contain more than one program statement, providing, of course, the
entire line length is less than 80 characters. This holds true in program mode and in
immediate mode.

ONE-LINE IMMEDIATE MODE PROGRAMS

In immediate mode the entire program must fit on a single line, since the
immediate mode program is executed as soon as you press the RETURN key. A
single line can contain more than one statement, therefore some interesting immedi-
ate mode programs can be created. Let us examine some possibilities.

A question mark appearing at the beginning of a BASIC statement causes the
CBM computer to display something; the question mark is an abbreviated form of the
PRINT statement. Although the illustrations of immediate mode statements shown ear-
lier all begin with a question mark, this is by no means a requirement for an immediate
mode program. Consider the following examples:

A=m¥2

READY.

A
£.28318531

There are two immediate mode statements. Each becomes an independent,
immediate mode program. When you type in the first statement, A =m+2, the result is
not displayed, since the statement does not begin with ?: but the calculation is per-
formed nevertheless. The result is displayed by the second immediate statement, 7A.

When statements are grouped together on one line, each is separated from the
next with a colon (:). Thus, the two statements:

A=T¥2
A
can be condensed into one line as follows:
A=m¥2: 7R
The two statements have become a single, immediate mode program.

Since a line can have up to 80 characters, you can put a lot of program on one line,

and execute it all in immediate mode. For example, consider the following line:

FOR I=1 TO 80@:7"A"; HEXT: ?"PHEW!"
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Ignoring the meaning of this *‘mini-program”’ for now, type itin exactly as shown,
ending with a RETURN. If you type it in successfully, you will see the letter A displayed
across the next 20 lines of a 40-column screen, followed by the message PHEW! on the
21st line:

FOR I=1 TO 86@:7"A"; ‘NEXT: 2"PHEW!"

a8
ARARRRRRRRRRARRRIRIRRRARARRRRAARRRRARAARAARAAA

HRRAARRAF IHHRRRRARRRAA

ARGR
lalelaisialslsinlsl IRRHARBRARRA

HRRARRARAAF

RARRRARAARARRARRRARARAA

AARARARRARARAAARAAARRRRARAAARAARAFRARARARARAR

aEGR
ARRRRAARRRRRARRARRARARARARRRARARRARARRAARARAARRARA

ARRRRRRRRRRRRRAAF HHARAARRA

=1=1
HAAARARRRRRRRARARRA 1HRRA

ARRRRRRRRIRRRRARARRRRRRRRRARRRARARRARRAAF

HHARRRRARAF IRARRRRARARRRRRRRARRRRRARARRARAR

-
HARRARARRRARRARAF THARARRRARRRARARAAARRA

HHAHRAARARAF RARARAARRA

HRRRABRARARF IHAHAARAARR

HHARRARRARRARARARAI 1HHHHAARRAR

AaRRRRRARRRRRARRRRRRRARRRRRARRARARARRRRRARAAR

ARARRRARRARRRRRRARRARRARRRARRRARARAARARARARA

PHEW!

RERADY.
»

The program line is conveniently left at the top of the screen. This is because the
program displays just enough lines to scroll the program line to the top of a 40-column
screen, but not off it.

The letter A will be displayed across 10 lines of an 80-column screen, with the pro-
gram above the top line of A’s.

Re-executing in Immediate Mode

When the one-line program described above completes execution in immediate
mode, the READY message is displayed and the cursor is left at the beginning of the
bottom display line.

An important feature of CBM BASIC is that anything displayed on the screen is
“live.”” You can edit any line on the screen and re-execute the edited statements, pro-
viding they are still displayed.

Use CURSOR UP or, more conveniently, press the HOME key to move the cur-
sor up to the F in FOR. Move the cursor right 15 positions to the A. Press a graphic key,
say the DIAGONAL QUARTER-BLOCK SOLID (shift of ? key). Press RETURN. The
new symbol now overwrites and replaces all the A’s across the 20-row display. On com-
pletion, the cursor again rests at the beginning of the bottom line.
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FOR I=1 TO B80@:7"%"; :NEXT: ?"PHEW!"

Modifying a Program

95

Before trying any more characters, make one editing modification to the line to
make changing characters easier. The new line, with the display character changed to a
W, will look like this:

CE="W"FOR I=1 TO S06:2CE; -NEXT:?"PHEW!"

To modify the current line, perform the following steps:

1.

FOR I=1 TO 20@:7"%"; NEXT: Z"PHEW! "

Press the INSERT key seven times.

FOR I=1 TO £88:7"%" . NEXT:?"PHEW!"

Type in the seven characters C$="W"":

C#="W"FOR I=1 TO 806:7"%", MEXT:>*"PHEW!"

CURSOR RIGHT 14 times to the first quotation mark.

CF="HW"IFOR I=1 TO S0@:7"%" tNEXT:?"FHEMW!'"

Type in the two characters C§

CF="W":FOR I=1 TO S06:7CE",; 'NEXT:?"FPHEW!'"

Remove the other quotation mark by pressing one CURSOR RIGHT:

CESW"IFOR I=1 TO S00:7CE"; CNEXT i ?"FHEM!"

Followed by one DELETE:

CE="W"FOR I=1 TO S06:2CF; (HEXT: ?"PHEMW!"

Home the cursor so it is blinking at the F in FOR ( # indicates position of
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The changes have all been made; press RETURN to print the new character. Now
you can HOME the cursor, then move it right just four positions to change the display
character. Display any other characters you want. The graphics are especially interesting.

SPACES ARE NOT NEEDED

Are you struggling with the question of where to put spaces in the line and where
not to? Don’t worry. CBM BASIC interprets a line by the elements in it. Spaces, or
blanks, are irrelevant. For example, the line:

128 FOR I=1 TO 21a

could read:

la FOR I=1 TOZ1@
Or:

129 FORI=1Tozlq

You can put extra spaces anywhere, except within reserved words or other BASIC
statements. GOTO may be written as either GOTO or GO TO. The only place you must
put spaces is within quotation marks, where you want spaces to be part of the text string.
Blanks in a statement improve readability of the program; use them for this purpose.

ELEMENTS OF A
PROGRAMMING LANGUAGE

Program statements must be written following a well defined set of rules.
These rules, taken together, are referred to as ‘‘syntax.”’

There are many different sets of rules, or syntax, that define the way in which pro-
gram statements are written. Each different set of rules applies to a different program-
ming language. CBM computers use just one programming language; it is called
BASIC. All of the syntax rules described in this book apply only to CBM BASIC.

Programming languages are as varied as spoken languages. In addition to BASIC,
other common programming languages are PASCAL, FORTRAN, COBOL, APL,
PL/M, PL-1, and FORTH. Uncommon program languages number in the hundreds.

Unfortunately, programming languages, like spoken languages, have dialects. A
BASIC program written for your CBM computer will not run on any other computer,
even if the other computer also claims to be programmable in BASIC. Dialects manifest
themselves as minor variations in the language syntax used by one computer as com-
pared to another. However, having learned how to program your CBM computer in
BASIC, you will have little trouble learning any other computer’s BASIC.

Some programming language syntax rules are obvious. The addition and subtrac-
tion examples at the beginning of this chapter use obvious syntax. You do not have to
be a programmer to understand these two statements. But most syntax rules are utterly
arbitrary; they are meaningless unless you have learned the syntax. You should not try
to seek justification for syntax rules; usually there is none. For example, why use *““**’ to
represent multiplication? One would normatly use a *“x’ sign for multiplication; but
the computer would have no way of differentiating between the use of the * X »’ sign to
represent multiplication, or to represent the letter “‘x”°. Therefore nearly all computer
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languages have opted for the asterisk (*) to represent multiplication. Division is univer-
sally represented by the **/*” sign. There is no real justification for this selection; the
standard division sign (=) is not present on computer or typewriter keyboards, so some
other character must be selected.

BASIC statement syntax deals separately with line numbers, data, and instruc-
tions to the computer. We will describe each in turn.

LINE NUMBERS

As we have already stated, in program mode every line of a BASIC program
must have a unique line number. Moreover, the first line of the BASIC program must
have the smallest line number, while the last line of the BASIC program must have the
largest line number. In between, line numbers must be in ascending order. The CBM
computer forces this upon you: irrespective of where you enter a line on the display,
the CBM computer will move it to its proper sequential position. Consider an existing
program with the following line numbers:

120
130
140
150
160
170
180
180

If you enter a new statement with line number 165, then the new statement
initially appears below the existing program, but the CBM computer will automatically
insert this statement between line numbers 160 and 170. This may be illustrated as
follows:

Displayed line numbers Lines stored and
when you entered line 165 re-displayed thus

120 ' 120

130 130

140 140

150 150

160 160

170 165

180 170

190 180

190

165

If the line number for a new statement duplicates an existing line number, then
the old statement will be replaced.

CBM BASIC allows line numbers to range between 1 and 63999, The CBM
computer interprets digits appearing at the beginning of any line as the line number. If
more than five digits appear at the beginning of the line then an error is flagged: it is
referred to as a syntax error, since you have violated the syntax rules for CBM BASIC.

All BASIC dialects require line numbers to be assigned in ascending order as de-
scribed above. However, the largest allowed line number varies from one dialect of
BASIC to the next.

Computer languages other than BASIC do not require every line to begin with a
line number, nor do they require line numbers, where present, to have any particular
order.
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You use line numbers as addresses, identifying locations within a program. This is
an important concept, since every program will contain two types of statements:

1. Statements which create or modify data, and
2. Statements which control the sequence in which operations are performed.

The idea that operations specified by a program must be performed in some well
defined sequence is a simple enough concept. Normally program execution begins with
the first statement in the program, and continues sequentially. This may be illustrated as
follows:

Start——— 10
CZO

30

40

50

60

70

< 80

etc.
But we will soon discover that most programs contain some non-sequential execution

sequences. That is when line numbers become important, because you use the line
number to identify a change in execution sequence. This may be illustrated as follows:

Start—— 10
CZO
30
40 GOTO 70
50
60
70
80
90
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DATA

The statement (or statements) following a line number specify operations that
the computer is to perform, as well as data that must be used while performing these
operations. We will now describe the types of data you may encounter in a CBM
BASIC program.

There are two kinds of numbers that can be stored in CBM computers: floating
point numbers (also called real numbers) and integers.

Floating Point Numbers

Floating point is the standard number representation used by CBM computers.

All arithmetic is done using floating point numbers. A floating point number can be a
whole number, or a fractional number preceded by a decimal point. The number can
be negative (—) or positive (4+). If the number has no sign it is assumed to be positive.
Here are some examples of floating point numbers that are equivalent to integers:

5

-15

65000

161
0

Here are examples of floating point numbers that include a decimal point:

0.5
0.0165432
-0.0000009
1.6

24,0055
-64.2
3.1416

Note that if you put commas in a number, you will get a SYNTAX ERROR
message. For example, use 65000, not 65,000.

Roundoff

Numbers always have at least eight digits of precision; they can have up to
nine, depending on the number. CBM BASIC rounds off additional significant digits.
Usually it rounds up when the next digit is five or more, and it rounds down when the
next digit is four or less, but there are some roundoff quirks.

Here are some examples:

7. 5555555556

. 555555555

7. 5555555557 Appears to round down on 6 or
- 593555556 less, up on 7 or more

o 111111115
SELSIL ST

P. 1111111116 Appears to round down on 5 or

Sliir111e less, up on 6 or more
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Scientific Notation
Large floating point numbers are represented using scientific notation. CBM
BASIC automatically converts numbers less than .01 or greater than108 in magnitude
to scientific notation. Here are some examples:
READY.

7l111111119
1.11111111E+B2

RERADY.

71111111115
1.11111112E+83

A number in scientific notation has the form:
numberE+ee

where:

number is an integer, fraction, or combination, as illustrated above. The
“number’’ portion contains the number’s significant digits; it is
called the “coefficient.” If no decimal point appears, it is
assumed to be to the right of the coefficient.

E is always the letter E. It substitutes for the word ‘exponent.”
is an optional plus sign or minus sign.
ee is a one-digit or two-digit exponent. The exponent specifies the

magnitude of the number, that is, the number of places to the
right (positive exponent) or to the left (negative exponent) that
the decimal point must be moved to give the true decimal point
location.

Here are some examples:

Scientific Notation Standard Notation
2E1 20
10.5E+4 105000
66E+2 6600
BBE-2 0.66
-66E-2 -0.66
1E-10 0.0000000001
94E20 9400000000000000000000

. Scientific notation is a convenient way of expressing very large or very small num-
bers. CBM BASIC prints numbers ranging between 0.01 and 999,999,999 using stan-
dard notation; but numbers outside of this range are printed using scientific notation.
Here are some examples:

?.0a9
JE-83

READY.
T.81
a1
REAIY.
7999993998, 9

FERDY.
$9995359599. 6
LE+@3
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Even using scientific notation there is a limit to the size of a number that CBM
BASIC can handle. The limits are:

Largest floating point number: +1.70141183E+38
Smallest floating point number: +2.93873588E~39

Any number of larger magnitude will give an overflow error. Here are some
examples of overflow error:

?1.70141183E+38
1.78141183E+38

RERDY. No Overflow error

7=1.78141183E+38
=1.78141183E+38

READY.
71.708141184E+38

POVERFLOW ERROR Overflow error
RERDY.
F-1.70141184E+38

YOVERFLOW ERROR

A number that is smaller than the smallest magnitude will yield a zero result. This
may be illustrated as follows:
72. 936735G0E-33
2. 22873588E-35

READY. These numbers are OK

7-2.393873588E-39
=2. 33ETISERE-39

READY.
72.93873587E-39
a These numbers are too small;
they are replaced by O
READY.

7-2.93873587E-39
@

Integers

An integer is a number that has no fraction or decimal point. The number can
be negative (—) or positive (+). An unsigned number is assumed to be positive.
Integer numbers must have values in the range —32767 to +32768. The following are
examples of integers:

0

1

44
32699
=15

Any integer can also be represented as a floating point number, since integers are
a subset of floating point numbers. CBM BASIC automatically converts integer num-
bers to floating point representation before using them in arithmetic.
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Strings

The word “string™ is used to describe data that consists of words. This is non-
numeric data; it is text.

We have already used strings as messages to be displayed on the CBM computer
screen. A string consists of one or more characters enclosed in double quotation
marks. Here are some examples of strings:

CHI
SYNERGY"'
"12345"

“$10.44 1S THE AMOUNT”
''22 UNION SQUARE, SAN FRANCISCO, CA”

Within a string you can include any alphabetic or numeric characters, special sym-
bols or graphic characters, cursor control characters (CLEAR SCREEN/HOME, CUR-
SOR UP/DOWN, CURSOR LEFT/RIGHT) and the REVERSE ON/OFF key. The
only keys that cannot be used within a string are RUN/STOP, RETURN, and INSERT/
DELETE.

All characters within the string are displayed as they appear. The cursor control
and REVERSE ON/OFF keys, however, normally do not print anything themselves; to
show that they are present in a string, certain reverse field symbols are used, as shown in
Table 4-1.

Strings are entered as part of a statement. Since a statement must fit within an 80-
character line, the longest string you can enter at a keyboard will have less than 80
characters; the statement needs some character positions for the line number, and
required statement syntax.

Strings of up to 255 characters can be stored in CBM computer memory. Long
strings are generated by concatenating shorter strings. We will describe how this is done
later.

Variables

Earlier, when describing immediate mode, we illustrated the two-statement pro-
gram:

A=THE
F

We rewrote the program using one statement:
A=T¥D 7R

In these programs, A is a variable name.
The concept of a variable is easy to understand. Consider the two statements:

These two statements cause the sum of two numbers to be displayed. But what are the
two numbers that get summed? They are whatever B and C represent at the time the
statements are executed. In the following example:

B is assigned the value 4.65, while C is assigned the value 3.72. Therefore A equals 8.37.
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Table 4-1. Special String Symbols

Function Key String Symbol*

)

OFF
Reverse On RVS X (Reverse R)

o
z

OFF

Reverse Off Shifted | RVS {Reverse Shifted R)
ON

CLR
Home Cursor SCREEN = (Reverse S)
HOME

CLR
Clear Screen Shifted |SCREEN ™1 (Reverse Shifted S)
HOM

i)

'
Cursor Down CURSOR 8 (Reverse Q)

v

pe
-

N

(Reverse Shifted Q)

]
b
S
2
o

Cursor Up Shifted |cu

<

B (Reverse ]}

[}
<
o
s
=]
o

Cursor Right

Cursor Left Shifted 81 (Reverse Shifted ])

gt

* The graphic symbol shown in this column may vary from one CBM computer
to the next, depending on the computer's keyboard options. But the key
description is accurate in every case.

Variable names can be used to represent string data or numeric data.

If you have studied elementary algebra, you will have no trouble understanding
the concept of variables and variable names. If you have never studied algebra, then
think of a variable name as a name which is assigned to a mail box. Anything which is
placed in the mail box becomes the value associated with the mail box name.

Variable Names

A variable name can have one, two or three characters. The following character
options are allowed:

B AN

L

Third character must be $ for a string variable, or
% for an integer variable. A floating point
variable name can only have two characters.

Second character can be any unshifted letter
(A to Z) or any numeric digit {1, 2, 3, 4, 5.6, 7,8, 9, 0},
for any type of variable.

First character must be an unshifted letter
(A to Z) for any type of variable.

Thus the last character of the variable name tells CBM BASIC which type of
data the variable represents.
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Note that unshifted letters of the alphabet are used for the first and second label
character. Depending on the model of CBM computer, the unshifted letter may be
upper case or lower case. But in either case it is the letter displayed when the SHIFT key
is not being depressed.

Floating point variables are the ones most frequently used in CBM BASIC. Here
are some examples of floating point variable names:

A
B
o
A1

AA
Z5

Here are some examples of integer variable names:

A%
B%
C%
Al%
MN%
X4%

Remempber, floating point variables can have values that are equivalent to integers.
Here are examples of string variable names:

A$

M$

MN$

M1$

ZX$

F6$

Variable names can have more than two alphanumeric characters, but only the

first two characters count. Therefore BANANA and BANDAGE are interpreted as the
same name, since both begin with BA. CBM BASIC allows variable names to have up to
255 characters. Here are some examples of variable names with more than two charac-
ters:

MAGICS Iinterpreted as MAS$
N123456789 interpreted as N1
MMM$ interpreted as MM$
ABCDEF% interpreted as AB%
CALENDAR interpreted ac CA

If you use variable names with more than two characters, keep the following
points in mind:

1. Only the first two characters, plus the identifier symbol (8§ or %) are signifi-
cant. Do not use extended names like LOOP1 and LOOP2; these are
interpreted as the same variable: LO.

2. CBM BASIC has a number of “‘reserved words,”’ which have special meaning
within a BASIC statement. No variable name can contain a reserved word
embedded anywhere in the name. Reserved words are listed in Table 4-4.

3. Additional characters need extra memory space, which you might need for
longer programs. But the advantage of using longer variable names is that
they make programs easier to read. PARTNO, for example, is more meaning-
ful than PA as a variable name describing part numbers in an inventory pro-
gram.
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OPERATORS

The BASIC statement:

tells the CBM computer to add the two floating point numbers represented by the varia-
ble names A and B, and to assign the sum to the floating point number represented by
the variable name C.

The plus sign (+) specifies addition. Standard computer jargon refers to the plus
sign an “‘operator.”” + is an arithmetic operator, because it specifies addition, which is
an arithmetic operation.

Arithmetic operators are easy enough to understand; we all learn to add, subtract,
multiply, and divide in early childhood. But there are two other types of operators: rela-
tional operators and Boolean operators. These are also easily understood, but they take a
little more explanation, since they do not reflect day to day experiences.

Table 4-2 summarizes the BASIC operators. We will examine each group of
operators in turn, beginning with arithmetic operators.

Table 4-2. Operators

Precedence Operator Meaning
High

9 () Parentheses denote order of evaluation
° w 8 1 Exponentiation
‘5 5 7 - Unary Minus
€E® 6 * Multiplication
£3 6 / Division
<O 5 + Addition

5 - Subtraction
_ 4 = Equal
[ 4 <> Not equal
g cé 4 Less than
% g 4 > Greater than
O 4 < =or= < Less than or Equal

4 >=or= > Greater than or Equal
< g 3 NOT Logical complement
2% 2 AND Logical AND
R 1 OR Logical OR
o 5 Low




106 PET/CBM Personal Computer Guide

Arithmetic Operators

An arithmetic operator specifies addition, subtraction, multiplication, division, or
exponentiation. Arithmetic operations are performed using floating point numbers.
Integers are automatically converted to floating point numbers before an arithmetic
operation is performed; the result is automatically converted back to an integer, if an
integer variable represents the result.

The data operated on by any operator is referred to as an “‘operand.”” Arithmetic
operators each require two operands, which may be numbers and/or numeric variables.

Addition (+). The plus sign specifies that the data (or operand) on the left of the
+ sign must be added to the data (or operand) on the right. For numeric quantities this
is straightforward addition. Examples:
242
A+B+C

X% +1
BR+10E-2

The plus sign (+) is also used to *“‘add”’ strings; but rather than adding their
values, they are joined together, or concatenated, to form one longer string. The
difference between numeric addition and string concatenation can be visualized as

follows:
Addition of Numbers:
num1+num2=num3

Addition of Strings:
string 1 +string2 =string1string2

Via concatenation, strings containing up to 255 characters can be developed.
Examples:

“FOR"+" WARD"" results in “FORWARD"’
“HI"+ "+ THERE"" results in ““HI THERE"
A$+B$ results in concatenation of

the two strings represented
by string variable labels
A$ and B$

1" + CH$+E$ results in the character "'1,”
followed by concatenation of
the two strings represented
by string variable labels
CH$ and E$

In the illustrations above, if A$ is set equal to “*FOR™ and BS$ is set equal to
“WARD,” then A$ + BS would generate the same results as *‘FOR’’ + “WARD.”

Subtraction (—). The minus sign specifies that the data (or operand) to the right
of the minus sign is to be subtracted from the data (or operand) to the left of the minus
sign. Examples:

4-1 results in 3
100-64 results in 36
A-B results in the variable

represented by label B
being subtracted from the
variable represented by
label A

55-142 results in —87

In the example above, if A is assigned the value 100, and B is assigned the value
64, then the second and third examples are identical.
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The minus operator is also used to identify a negative number. Examples:

-5
~9E4
-8

4--2

Note that 4—--2

is the same as 442

Multiplication (*). An asterisk specifies that the data (or operand) on the right of
the asterisk is multiplied by the data (or operand) on the left of the asterisk. Examples:

100-2
50+0
AX1

R%-14

results in 200
results in O
results in muitiplication of
two floating point numbers
represented by floating point
variables labeled A and X1
results in an integer
represented by integer variable
label R% being multiplied by 14

In the examples above, if variable A is assigned the value 4.2, and variable X1 is
assigned the value 9.63, then the illustrated multiplication would generate 40.446. A
and X1 could hold integer values 100 and 2 to duplicate the first example; however the
two numbers would be held in the floating point format as 100.0 and 2.0, since A and X1
are floating point variables. In order to multiply 100 by 2, representing these numbers as
integers, the example would have to be A%+*X1%.

Division (/). The slash specifies that the data (or operand) on the left of the slash
is to be divided by the data (or operand) on the right of the slash. Examples:

10/2
6400/4
A/B

4E2/XR

results in 5

results in 1600

resuits in the floating point
number assigned to variable
A being divided by
the floating point number
assigned to variable B

results in 400 being divided
by the floating point number
represented by label XR

The third example, A/B, can duplicate the first or second example, even though
A and B represent floating point numbers. But the integer numbers would be held in
floating point form. A%/B% could exactly duplicate either of the first two examples,

however.
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Exponentiation (1). The up arrow specifies that the data (or operand) on the left
of the up arrow is raised to the power specified by the data (or operand) on the right of
the up arrow. If the data (or operand) on the right is 2, the number on the left is
squared; if the data (or operand) on the right is 3, the number on the left is cubed, etc.
The exponent can be any number, variable, or expression, as long as the exponentiation

yields a number in the allowed floating point range. Examples:

212 results in 4

1212 results in 144

113 results in 1

AlS results in the floating
point number assigned
to variable A being
raised to the 5th power

216.4 results in 84.4485064

NMT-10 results in the floating
point number assigned
to variable NM being
raised to the negative
10th power

147F results in 14 being raised

Order of Evaluation

to the power specified
by floating point variable F

An expression may have multiple arithmetic operations, as in the following state-

ment:
A+C+10/212

When this occurs, there is a fixed sequence in which operations are processed.

First comes exponentiation (1), followed by sign evaluation, followed by multiplica-
tion and division (*/), followed by addition and subtraction (+ —). Operations of the
same hierarchy are evaluated from left to right. This order of operation can be overrid-
den by the use of parentheses. Any operation within parentheses is performed first.

Examples:

4+1-2 resuits in 6
(4+1)+2 results in 10
100+4/2-1 results in 199
100+{4/2-1)  resuits in 100
100+(4/(2~1)) results in 400

When parentheses are present, CBM BASIC evaluates the innermost set first,
then the next innermost, etc. Parentheses can be nested to any level, and may be used
freely to clarify the order of operations being performed in an expression.

Relational Operators

Relational operators represent the conditions: greater than (> ), less than (<),
equal (=), not equal (<>), greater than or equal (> =), and less than or equal

(<=).
1=5-4 results in true {—1)
14>66 results in false (0)
15>=15 results in true (= 1)
A<>8B the result will depend

on the values assigned
to floating point variables
A and B
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CBM BASIC arbitrarily assigns a value of 0 to a ‘‘false”’ condition; a value of —1
is assigned to a *‘true’’ condition. These 0 and — 1 values can be used in equations. For
example, in the expression (1=1)*4, (1=1) is true. True equates to — 1, therefore the
expression is the same as (—1)+4, which results in —4. You can include any relational
operators within a CBM BASIC expression. Here are some more examples:

25+{14>686) - is the same as 2540
{(A+{1=5-4}}-{15>=15) is the same as (A=1)e(=1)

Relational operators can be used to compare strings. For comparison purposes,
the letters of the alphabet have the order A<B, B<C, C< D, etc. Strings are compared
one character at a time, starting with the leftmost character. Examples:

AT BY results in true {—1)
“XT =YX results in false (O}
C$=A$+B$ the result will depend
on the string values assigned
to the three string variables
C$, B$, and AS$
When operating on strings, as for numbers, CBM BASIC generates a value of —1
if a relational operator specifies a *‘true’’ condition; a value of 0 is generated for a

“‘false’” condition. Here are some examples:

{"JONES” >"'DOE"'}+37 is the same as -1+37
("AAA"” <"AA”)(Z9—-("OTTER" >"AB"}) is the same as 0+(29-(-1))

Boolean Operators

Boolean operators give programs the ability to make logical decisions. There are
four standard Boolean operators: AND, OR, EXCLUSIVE OR, and NOT. CBM BASIC
supports three of these operators: AND, OR, and NOT.

If you do not understand Boolean operators, then a simple supermarket shopping
analogy will serve to illustrate Boolean logic.

Suppose you are shopping for breakfast cereals with two children.

The AND Boolean operator says that a cereal is selected if child A and child B
select the cereal.

The OR Boolean operator says that a cereal will be selected if either child A or
child B selects the cereal.

The NOT operater generates an opposite. If child B insists on disagreeing with
child A, then child B’s decision is always the not of child A’s decision.

Computers do not work with analogies; they work with numbers. Therefore Boo-
lean logic reduces all variables and results to 0 or 1. Table 4-3 summarizes the way in
which Boolean operators handle numbers. This table is referred to as a ‘‘truth table.””
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Boolean operators are used to control program execution logic; here are some
examples:

IF A=100 AND B=100 GOTO 10
it both A and B are equal to 100, branch to line 10

IFX < Y AND B >=44 THEN F=0
if X is less than Y, and B is greater than or equal to 44,
then set F equal to O

IF A=100 OR B=100 GOTO 20
If gither A or B has a value of 100, branch to line 20

IF X<<Y OR B>=44 THEN F=0
Fis set to O if X is less than Y, or B is greater than 43

IF A=1 AND B=2 OR C=3 GOTO 30
Take the branch if both A=1 and B=2: also take
the branch if C=3

A single operand can be tested for *‘true’ or “‘false.” An operand appearing alone
has an implied ** < >0"" following it. Any non-zero value is considered true; a zero value
is considered false.

IF A THEN B=2

IF A< >0 THEN B=2
The above two statements are equivalent

iF NOT B GOTO 100
Branch if B is false, i.e., equal to zero. This is
probably better written as
IF B=0 GOTO 100

All Boolean operations use integer operands. If you perform Boolean operations
using floating point numbers, then the numbers are automatically converted to integers;
therefore the floating point numbers must fall within the allowed range of integer num-
bers.

You cannot perform Boolean operations using string operands.

If you are a beginning programmer, you are unlikely to use Boolean operators
in the manner which we are about to describe. If you find you do not understand the
discussion, then skip to the next section.

Table 4-3. Boolean Truth Table

The AND operation results in a 1 only if both bits are 1

1 AND 1
0 AND 1
1 AND O
O AND O

oo on

[eNeNe

The OR operation results in a 1 if either bit is 1

e
TOR1 =1
OOR1 =1
10RO =1
OORO=0

The NOT operation logically complements each bit
NOT1 =0
NOT O = 1
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Boolean operators operate on integer operands one binary digit at a time. CBM
BASIC stores all numbers in binary format, using two’s complement notation to repre-
sent negative numbers. Therefore we can illustrate an AND operation as follows:

43 AND 137 =9

-

89,5 — 10001001
2B, — 00101011

08,4 — 00001001

Here is an OR operation:

43 OR 137 = 171

89,5 — 10001001
28, — 00101011

ABjg — 10101011 ——

[

Here are two NOT operations:

NOT 43 = 212

|

2B, — 00101011

i i

D4, — 11010100 ——

NOT 137 = 118

|

89,5 — 10001001

76,5 — 01110110 ——

Boolean operations of this type are used in engineering applications.*

If operands are not integers, they are converted to integer form; the Boolean
operation is performed, and the result is returned as a 0 or 1.

If a Boolean operator has relational operands, then the relational operand is evalu-
ated to —1 or 0 before the Boolean operation is performed. Thus the operation:

A=10OR C<2

tepnds)

Consider this more complex operation:

is equivalent to:

IF A=B AND C <D GOTO 40

First the relational expressions are evaluated. Assume that the first expression is true
and the second one is false. In effect, the following Boolean expression is evaluated as
follows:

IF —1 AND O GOTO 40

*If you wish to learn more about binary arithmetic and Boolean operations. see 4n [ntroduction to
Microcomputers: Volume 0 — The Beginners Book by A. Osborne. Osborne/McGraw-Hili, 1977.
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Performing the AND vyields a 0 result:
IF 0 GOTO 40

Recall that a single term has an implied ** < >0 following it. The expression therefore
becomes:

IFO <> GOTO 40

Thus, the branch is not taken.
In contrast, a Boolean operation performed on two variables may yield any integer
number:

IF A% AND B% GOTO 40

Assume that A%=255 and B%=240. The Boolean operation 255 AND 240 yields 240.
The statement, therefore, is equivalent to:

IF 240 GOTO 40
or, with the “<>0":
IF 240 <> 0 GOTO 40

Therefore the branch will be taken.
Now compare the two assignment statements:

A =AAND 10
A=A <10

In the first example, the current value of A is logically ANDed with 10 and the
result becomes the new value of A. A must be in the integer range — 32767 to +32768.
In the second example, the relational expression A< 10 is evaluated to —1 or 0,s0 A
must end up with a value of —1 or 0.

ARRAYS

Arrays are used frequently, in every type of computer program. If you do not
understand arrays, then you must learn about them. The information that follows will
be very important to your programming efforts.

Conceptually, arrays are very simple. When you have two or more related data
items, instead of giving each data item a separate variable name, you give the collec-
tion of related data items a single variable name. Then you select individual items
using a position number, which in computer jargon is referred to as a subscript, an
index, or a dimension.

A grocery list, for example, may have six items from the meat and poultry depart-
ment, four fruit and vegetable items, three dairy products, etc. These three groups of
items could each be represented by a single variable name as follows:

MP${0) = ""CHOPPED SIRLOIN"* FV$(0) = “ORANGES”
MP$(1) = “CHUCK STEAK" FV$(1) = “APPLES”
MP$(2) = “'NEW YORK STEAK’' FV$(2) = "BEANS"”
MP$(3) = “CHICKEN" FV$(3) = "CARROTS"
MP$(4) = “SALAMI”

MP$(5) = “SAUSAGES" DP$(0) = "'"MILK"’

DP$(1) = “CREAM"
DP$(2) = ""COTTAGE CHEESE”

MP$ is a single variable name that identifies all meat and poultry products.
FV$ identifies fruits and vegetables, while DP$ identifies dairy products.
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A subscript (index or dimension) follows each variable name. Thus a specific data
item is identified by a variable name and an index.

We could take the array concept one step further, specifying a single variable
name for the entire grocery list, using two indexes. The first index (or dimension)
specifies the product type and the second index (or dimension) specifies the item within
the product type. This is one way in which a single grocery list variable array with two
subscripts could replace the three arrays with single subscripts illustrated above:

GL$(0.0} = MP$(0) GL${1,0) = FV${0) GL$(2,0) = DP$(0)
GL$(0,1) = MP$(1) GLS$(1,1) = FV$(1) GL$(2,1) = DP$(1)
GL$(0,2) = MP${2) GL$(1,2) = FV$(2) GL$(2,2) = DP${2)
GL$(0,3) = MP$(3) GL$(1,3) = FV$(3)

GL$(0.4) = MP${4)

GL$(0.5) = MP$(5)

Arrays can represent integer variables, floating point variables, or string varia-
bles; however, a single array variable can only represent one data type. In other
words, a single variable cannot mix integer and floating point numbers. One or the other
can be present, but not both.

Arrays are a useful shorthand means of describing a large number of related varia-
bles. Consider, for example, a table of numbers containing ten rows of numbers, with
twenty numbers in each row. There are 200 numbers in the table. How would you like it
if you had to assign a unique name to each of the 200 numbers? It would be far simpler
to give the entire table one name, and identify individual numbers within the table by
their table location. That is precisely what an array does for you.

Arrays can have one or more dimensions. An array with a single dimension is
equivalent to a table with just one row of numbers. The dimension identifies a number
within the single row. (Engineers use the word “‘vector’ to describe an array with a
single dimension.) An array with two dimensions yields an ordinary table with rows and
columns: one dimension identifies the row, the other dimension identifies the column.
An array with three dimensions yields a ‘‘cube’ of numbers, or perhaps a stack of
tables. Four or more dimensions yield an array that is hard to visualize, but mathemati-
cally no more complex than a smaller-dimensioned array.

Let us examine arrays in detail.

A single-dimensional array element has the form:

namet(i}
where:

name is the variable name for the array. Any type of
variable name may be used.
is the array index to that element. i must
start at O.

A single-dimensional array called A, having five elements. can be visualized as
follows:
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The number of elements in the array is equal to the highest index number, plus 1.
This takes array elements 0 into account.
A two-dimensional array element has the form:
namefi,j)
where:

name is the variable name of the array
t is the column index
i is the row index

A two-dimensional array called A$, having three column elements and two row
elements, might be visualized as follows:

A$(0,0) A$(0.1)
A$(1,0) A$(1.1)
A$(2,0) A$(2,1)

The size of the array is the product of the highest row dimension plus 1, multi-
plied by the highest column dimension plus 1. For the array above, it is 3X2=6 ele-
ments.

Additional dimensions can be added to the array:

name (ijk,...)

Arrays of up to eleven elements (index 0 to 10 for a single dimensioned array)
may be used routinely in CBM BASIC. Arrays containing more than eleven elements
need to be *‘declared’’ in a Dimension statement. Dimension statements are described
later in this chapter. An array (always with subscripts) and a single variable of the same
name are treated as separate items by CBM BASIC.

BASIC COMMANDS

In Chapters 2 and 3 we describe a number of commands which you enter via the
keyboard in order to control CBM computer operations. RUN is one such command.
Commands can all be executed as BASIC statements.

You are unlikely to execute commands out of BASIC statements when you first
start writing programs.

When you start writing very large programs you will run out of memory space.
Then you must break a program up into a number of smaller modules and execute them
one at a time. Each module must load the next module in turn. This is described in
Chapter 6.

Reserved Words

All of the character combinations that define a BASIC statement’s operations,
and all functions, are called ‘‘reserved words.”” Table 4-4 lists all CBM BASIC
reserved words. You will have encountered many of these reserved words in this
chapter, but others are not described until Chapter 6.
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Table 4-4. Reserved Words

Abbreviations Abbreviations Abbreviations Abbreviations
25 |os 25 |28 25 gk 25 |pd
WORD E g ,‘; 5 WORD g ] § g WORD g 5 %: g WORD ;E: 5 ‘ﬂ’: g

2ac| 58 2oe|lfaEw SEwu|BE 85=|55+=
260|558 i58|a54 268|054 25h|ada

ABS 2k Al DS$* ds¥ Ds¥ NEW = HEM SCRATCH"

AND aH A DSAVE" oS Die NEXT nE M= SGN

APPEND* aF A7 END E. NOT i HI™ SIN

ASC a5 Fe EXP Ew ON =g oM SPCI

ATN aT Al FN FH OPEN oF o7 SQR

|sackup | kA | Ee FOR Fr OR ar oF ST g

CHRS$ cH B FROM F= PEEK rE -l STATUS  |status | STATUS

CLOSE cld | CLC | GET o= POKE w0l Fr STEP stE  |5TT

CLR ol cL GET # GET# |pPos B FOS STOP =

CMD cm o GOTO G PRINT &) ? STRS

COLLECT" col |COL |Gosus GO PRINT # 4 5YS

CONCAT* conC | COM— |HEADER® H™ READ TAB(

CONT oo |or IF IF READ # TAN

COPY* cof | COT INPUT irent] INFUT | RECORD® THEN

cos cos cos INPUT % iH 1/ REM Tl

DATA df | Da INT int | INT | RENAME® TIME

DCLOSE* | «C |D—  |LEFTS leF [LE- | RESTORE T$

DEF dE - LEN len LEM RETURN TO

DIM dI | D- LET 1E 1 RIGHTS us

DIRECTORY*| ctif |DI_ |LST 11 L~ RND VAL A

DLOAD® dL | IL LOAD 10 Lr RUN VERIFY wE Y=

DOPEN® ddl onr LOG Lo | LOG SAVE WAIT Wi L

Ds* ds o= MID$ ml M=,

* These are reserved words in BASIC versions 4.0 and higher only

When executing BASIC programs, the CBM computer scans every BASIC state-
ment, seeking out any character strings that constitutes a reserved word. The only
exception is text strings enclosed in quotes. This can cause trouble if a reserved word is
embedded anywhere within a variable name. The CBM computer is not smart enough to
identify a variable name by its location in BASIC statement. Therefore you should be
very careful to keep reserved words out of your variable names; this is particularly
important with the short reserved words that can easily slip into a variable name.

Some reserved words are shown in Table 4-4 with an asterisk. These reserved
words apply only to CBM BASIC versions 4.0 and higher. Nevertheless it is a good idea
not to use these reserved words in any CBM BASIC program. You never know when
you may wish to upgrade a program so that it runs on a newer CBM computer using
BASIC 4.0.

BASIC Word Abbreviations

You learned early in this book that the BASIC statement PRINT could always be
entered from the keyboard by the abbreviation ?, the question mark character. ? is
expanded by the CBM BASIC interpreter to the full word PRINT.

Most BASIC commands, statements, and functions can be abbreviated using
the first two characters of the keyword, with the second character entered in shifted
mode. With the standard character set, the second character appears as a graphic
character. For example, the abbreviation for LIST appears as:

or Il
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Where a two-letter abbreviation is ambiguous (does ST mean STEP or STOP?)
the two-letter abbreviation is assigned to the most frequently used keyword, and the
other word (or words) are either not abbreviated or are abbreviated by the first three
characters with the third entered in shifted mode. For STEP/STOP, STOP is abbrevi-
ated:

=T

or =1
STEP is abbreviated: e
or ST~

To abbreviate STEP, type unshifted S (capital S), unshifted T (capital T), and shifted E
(graphic 3/4 TOP LINE HORIZONTAL).

Following are a few sample input lines showing use of the two- and three-letter
abbreviations wherever possible. All the abbreviated words are expanded to the full
spelling when you list the programs.

B0 53468 14 fafter RETURN) Abbreviation for POKE
18 1E a=106

28 b=a al 14+ex(2)

30 dl c(S5)

40 0 i=8 to S

S8 rE cuiy

&8 nE
7O A 1.6,2.4.18.5.1&
I8 res
20 eH
i Abbreviation for LIST
18 let a=14
28 b=z oand 14+eand2)
{

28 ddim o S5

48 Forr 1=0 o S

S8 read cuio

&0 mext

78 data 1.8.2.4.18.5.16

28 restore

30 end

w0 SR468. 12 (before RETURN) Abbreviation for POKE

After keying RETURN at the last POKE statement line (return to Standard Character
Set), you will see the abbreviations show with graphics as the shifted characters, and the
expanded listing will display upper case letters.
A list of reserved words and their abbreviations, if any, is given in Table 4-4.

Note that the expansions from abbreviations for the two functions SPC and TAB
include the left parenthesis. This means that if you use the abbreviation for either of
these, you must not type in the left parentheses. For example:

16 ?=P(S)
expands to:

18 print spod C5)

Pt
syntax error results from two
left parentheses
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The correct keyin is:

18 ?=F55

This parenthesis rule applies only to the SPC and TAB functions and is a format
inconsistency you will have to watch for when abbreviating these function names. For
all other functions, you key in both parentheses. For example:

18 TrHi1s

BASIC STATEMENTS

The operation performed by a statement is specified using “‘reserved words”’
(see Table 4-4).

Remember, Chapter 8 provides a complete description of every statement recog-
nized by CBM BASIC. This chapter introduces you to programming concepts, stressing
the way statements are used. No statement is described in detail in this chapter. Read
the statement description given in Chapter 8 if you do not understand how any state-
ment is being used.

REMARKS

It is appropriate that any discussion of BASIC statements begins by describing
the only BASIC statement which the computer will ignore: the remark. If the first
three characters of a BASIC statement are REM, then the computer ignores the state-
ment entirely. So why include such a statement? The answer is that remarks make your
program easier to read.

If you write a short program with five or ten statements, you will probably have lit-
tle trouble remembering what the program does — unless you leave it around for six
months and then try to use it again. If you write a longer program with 100 or 200 state-
ments, then you are quite likely to forget something very important the very next time
you use the program. After you have written dozens of programs, you will stand no
chance of remembering each program in detail. The solution to this problem is to docu-
ment your program by including remarks that describe what is going on.

Good programmers use plenty of remarks in all of their programs. In all of this
chapter’s program examples we will include remarks that describe what is going on,
simply to get you into the habit of doing the same thing yourself.

Remark statements have line numbers, like any other statement. A remark state-
ment’s line number can be used like any other statement line number.
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ASSIGNMENT STATEMENT

Assignment statements let you assign values to variables. You will encounter
assignment statements frequently, in every type of BASIC program. Here are some
examples of assignment statements:

28 REM IMITIALIZE VYARIAELE X
ig@ LET ® 24

In statement 100, floating point variable
X is assigned the value 3.24

158 H=Z.24

Equivalent to statement 100 above; the LET
is optional in all assignment statements

215 AF="ALS0 RAN"

The string variable A$ is assigned
the two text words ALSO RAN

Here are three assignment statements that assign values to array variable DP$(I),
which we encountered earlier when describing arrays:

208 REM DPEC1) 15 THE DAIRY FRODUCTS SHOPFIMG
LIZT 'JHF’IHE LE

218 DP$Ca="MILK"

228 DP#(13="CREAM"

238 DF$( COTTAGE CHEESE"

Remember, we can put more than one statement on a single line; therefore the
three DP$ assignments could be placed on a single line as follows:

8@ REM DF$CI> IS THE DAIRY PRODUCTS SHOPPING
LIST '.'FiFEFiE-L:
218 IFs# ="MILK" DF$(13="CREAM" DP$(2)=
ne f""[—shE CHEEZE"

Recall that a colon must separate adjacent statements appearing on the same line.
Assignment statements can include any of the arithmetic or relational operators
described earlier in this chapter. Here is an example of such an assignment statement:

5 H_IIHNP WAY TO ASSIGH A VALUE 7O ¥

This statement assigns the value 4.17647059 to floating point variable V: it is
equivalent to these three statements:

1 A AND % MEED TO BE INITIALIZED SEFARATELY
LATER USE

which could be written on one line as follows:

188 X=7,96: =8, 5 y=3, 24+X/Y
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Here are assignment statements that perform the Boolean operations given earlier
in this chapter:

23 REM THESE EXAMFLES WERE DESCRIBED ERRLIER IN THE
CHAFTER

188 AX=43 AHD 137V

288 BH=43 OR 137

The following example shows how a string variable could have its value assigned
using string concatenation:

168 YE="COTTAGE"

ZaG WE="CHEESE"

AR DF$C20=YE+" " +liE

408 REM DP$(2) IS ASSIGHMED THE STRING WALUE "COTTAGE CHEESE"

DATA and READ Statements

When a number of variables need data assignments, the DATA and READ
statements should be used rather than the LET statement. Consider the following
example:

S REM INITIALIZE ALL FROGRAM YARIAELES

18 DATA 16,26, -4, 16EE

28 READ ALE.C.T
The statement on line 10 specifies four numeric data values. These four values are
assigned to four floating point variables by the statement on line 20. After statements on
lines 10 and 20 have been executed, A=10, B=20,C=—4and D=16 X 10°,

If you have one or more DATA statements in your program, then you can visual-
ize them as building a “‘column’’ of numbers. For example, a DATA statement that
contains a list of 10 numbers would build a ten-entry column. Two DATA statements
each specifying five of the ten data entries would build exactly the same column. This
may be illustrated as follows:

10 DATA 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

——_
S ~

First column entry —s¢ 10
20

1¢ 30

40

50

60

70

2 80

90

100 /<—— Last column entry

e
10 DATA 10, 20, 30, 40, 50
20 DATA 60, 70, 80, 90, 100

——— A —

2
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The first READ statement in the program starts at the first column entry and
takes numbers sequentially, assigning them to variables named in the READ statement.
The second (and subsequent) READ statements take values from the column, starting
at the point where the previous READ statement left off. This may be illustrated as
follows:

10 DATA 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

esrsere

220 READ A, B\C—/

tvecnes
II Il
S
o

70

50 80

340 READ C, i_/ / 90

A = 60 100
; E=70
. F =80
G = 90

490 READ A, EF.G B = 100

500 READ B\/

RESTORE Statement

You can at any time send the pointer back to the beginning of the numeric col-
umn by executing a RESTORE statement. Here is an example of the use of
RESTORE:

10 DATA 10, 20, 30, 40, 50, 60 70, 80, 90, 100

ses s

220 READ A, B, C

e eaa

g,
340 READ C, D

350 RESTORE A =10 100
. E=20
: F=30
. G = 40
. J— e, B =50

490 READ A, E F, G
500 READ B
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DIMENSION STATEMENT

CBM BASIC normally assumes an array variable has a single dimension, with
index values of 0 through 10. This generates an eleven-element array. If you want a
single dimension with more, or less, than eleven elements, then you must include the
array variable in a dimension statement. You must include the array in a dimension
statement if it has two or more dimensions, whatever number of elements the array
may have. The following example provides dimensions for the three single-indexed
variables MP$, FV$, and DP$. We used these variables in our earlier discussion of
arrays.

TIM MPECSh L FyYE 3 IFELDY
The double-dimension grocery list variable would be dimensioned as follows:
DIM GLECE S0

A dimension statement can provide dimensions for any number of variables, pro-
viding the statement fits within an 80-column line.

The number (or numbers) following a variable name in a DIM statement is equal
to the largest index value that can occur in that particular index position. But remember
indexes begin at 0. Therefore MP$(5) dimensions the variable MPS$ to have six values,
not five, since indexes 0, 1, 2, 3, 4, and 5 will be allowed. GL$ (3,5), likewise, specifies a
double-dimension variable with 24 entries, since the first dimension can have values 0,
1, 2, and 3, while the second dimension can have values 0 through 5.

Once you have specified an array variable in a dimension statement, you must
subsequently reference the variable with the specified number of indexes; each index
must have a value between 0 and the number specified in the dimension statement. If
any of these syntax rules are broken a syntax error will be reported.

BRANCH STATEMENTS

Statements within a BASIC program are normally executed in ascending order of
line numbers. This execution sequence was explained earlier in this chapter when we
described line numbers. Branch statements change this execution sequence.

GOTO Statement

GOTO is the simplest branch statement; it allows you to specify the statement
which will be executed next. Consider the following example:

3 oA=4. 5T
GOTO 193

AT

=T e

ok b L
— T

The statement on line 20 is an assignment statement: it assigns a value to floating point
variable A. The next statement is a GOTO: it specifies that program execution must
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branch to line 100. Therefore the instruction execution sequence surrounding this part
of the program will be line 20, then line 30, then line 100.

Of course, some other statement must branch back to line 40, otherwise the state-
ment on line 40 would never be executed by program logic as illustrated above.

You can branch to any line number, even if the line has nothing but a remark on
it. However, the computer ignores the remark, so the effect is the same as branching to
the next line. For example, consider the following branch:

=3, 37
GoOTD 7o

‘/\
JAAE I Y
T

)REM THERE IS A REMARE. AMD MOTHING ELSE OM THIS LIME

Program execution branches from line 30 to line 70; there is nothing but a remark
on line 70, therefore the computer moves on to line 80, executing statements on this
line. Therefore, even though you can branch to a remark, you might as well branch to
the next line. This may be illustrated as follows:

i
5]
A REM THERE IS5 A REMARK. AMD MOTHIMG ELSE OM THIS LIMNE
{5}
(5]

Computed GOTO Statement

There is also a computed GOTO statement that lets program logic branch to one
of two or more different line numbers, depending on the current value of a variable.
Consider the following illustration:

The statement on line 40 is a computed GOTO. When this Statement is executed, pro-
gram logic wil! branch to statement 10 if variable A% = 1, the branch will be to statement
70 if variable A%=2, while A% =3 causes a branch (o statement 150. If A% has any
other value than 1, 2, or 3, an error is reported. Notice that variable A% is assigned a
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value in statement 30. The value assigned to A% depends on the current value of varia-

ble B%. The illustration does not show how variable B% is computed; however, so long

as B% has a value of 3, 4, or 5, the statement on line 40 will cause a branch to be taken.
To test the computed GOTO statment, key in the following program:

N

AR

L B D e
)

Now execute this program by typing RUN on any blank line. Do not type RUN on
any line that already is displaying something. If you do, you will get a syntax error and
the program will not be executed.

Can you account for the sequence in which digits are displayed? Try rewriting the
program so that each number is displayed once, in the sequence: 345345345...

LOOPED CONTROL STATEMENTS

FOR-NEXT Statement

GOTO and computed GOTO statements let you create any type of statement
execution sequence that your program logic may require. But suppose you want to re-
execute an instruction, (or a group of instructions) many times. For example, sup-
pose array variable A(I) has 100 elements and each element needs to be assigned a
value ranging from 0 to 99. Writing a hundred assignment statements would be very
tedious. It is far simplier to re-execute one statement one hundred times. This can be
done using the FOR and NEXT statements as follows:

-t

Sl

T

B B ke

Statement(s) between FOR and NEXT are executed repeatedly. In this case a
single assignment statement appears between FOR and NEXT; therefore this single
statement is re-executed repeatedly.

In order to test the workings of FOR-NEXT loops, we will display A(I) values cre-
ated within the loop. Key in the following program:

i

R D] 1“:

REh IF wOU HAVE A GOTO STATEMEMT THRT ERAMOCHET 71 I7I1ZLF T2
REM COMPUTER ESECUTES AWM EMDLESS LOOF. IW EFFZIT 17 RD

GOTO =0

3

RN

RS

Now key in RUN. The program is executed. One hundred numbers are displayed, start-
ing at 0 and ending at 99. Press the STOP key to stop program execution.

Statements between FOR and NEXT are re-executed the number of times
specified by the index variable appearing directly after FOR: in the illustration above
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this index variable is 1. I is specified as going from 0 to 99 in increments of 1. I also
appears in the assignment statement. Therefore the first time the assignment statement
is executed, I will equal 0 and the assignment statement will be executed as follows:

38 ABI=@

I is increased by the step, or increment, size, which is specified on line 20 as 1; 1
therefore equals the second time the assignment statement on line 30 is executed. The
assignment statement has effectively become:

28 ACLY=1

I continues to be incremented by the specified STEP until the maximum value of
99 is reached or exceeded.

STEP does not have to be 1; it can have any integer value. Change step to 5 on line
20 and re-execute the program. Now the assignment statement is executed just 20
times, since incrementing [ by 5 nineteen times will take it to 95; the 20th increment will
take it to 100, which is more than the maximum value of 99. Keeping STEP at 5, we
could allow the assignment statement to be executed 100 times by increasing the max-
imum value of I to 500. Can you make this change? (Remember to change the dimen-
sion statement as well.)

The step size does not have to be positive. But if the step size is negative, then the
initial value of I must be larger than the final value of . For example if the step size is
—1, and we want to initialize 100 elements of AC(I) with values ranging from 0 to 99,
then we would have to rewrite the statement on line 20 as follows:

18 DIM ACSS)
26 FOR 1=93 TO @ STEP -1
I8 ACI)=I
25 PACIY;
48 MEXT 1
SE GOTO 2@
Execute this program to test the negative STEP.

The initial and final values for I, and the step size, are evaluated as integers; but
no other restrictions are placed on these three values. You can specify these three values
using floating point variables or expressions. Expressions will be evaluated to a floating
point result. Then the floating point result will be converted to an integer using the
round-off rules described earlier in this chapter.

Because round-off rules can cause problems, you are strongly urged to specify
beginning, ending and step sizes as integers. Do not use expressions since this
unnecessarily complicates the program. If you must calculate one of these values, it is
simplier and faster to do so in a separate statement.

If the step size is 1 (and this is frequently the case), you do not have to include a
step size definition. In the absence of any definition, CBM BASIC assumes a step size
of 1. Therefore we could rewrite the statement on line 20 as follows:

18 DIM A3

15 REM USE A STEF SIZE OF 1
26 FOR I=@ TO 99

33 ACIN=1

35 PACIY;

48 MEXT 1

20 GOTO 54

Also, you do not need to specify the index variable in the NEXT statement. But if
you do, it will make your program easier to read.
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Nested Loops

The FOR-NEXT structure is referred to as a ‘‘program loop”’ since statement
" execution loops around from FOR to NEXT, and back to FOR. This loop structure is
very common; almost every BASIC program that you write will include one or more
such loops. Loops are so common that they are frequently nested. The statement
sequence occurring between FOR and NEXT can be of any length; frequently it can
run to tens or hundreds of statements. And within these tens or hundreds of state-
ments, additional loops may occur. The following illustration shows a single level of
nesting:

168 DIM ACSSD

26 FOR I=8 TO 29

2@ ACIo=I

40 REM DISPLAY ALL WALUES OF ACI) ASSIGHED THUS FAR

S@ FOR J=8 TO I

8@ PRI

78 MEXT J

20 NEXT I

28 GOTO 2@

Complex loop structures appear frequently, even in relatively short programs.
Here is an example, showing the FOR and NEXT statements, but none of the inter-
mediate statements:

S8 FOR I=1 TO 1@
E8 FOR X=25 TO 347 STEF 3

100 FOR A=9 TO @ STEP -1

148 NEXT A
206 FOR E=25 TO 160 STEF S

286 NEXT B
T66 NEXT o

Seo FOR Y=1 TO 28 STEF 2
£66 FOR F=18 TO 20

£56 MEXT F
vaa MEXT Y

lgea FOR 2=1 TO 18

1638 NEXT 2
1200 NEXT 1
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The outermost loop uses index I; it contains three nested loops that use indexes X, Y,
and Z. The first loop contains two additional loops which use indexes A and B. The sec-
ond loop contains one nested loop using index P. The third loop contains no nested
loops. Each nested loop must have a different index variable name. Statement execu-
lion sequences may be illustrated as follows:

OR I=1 TO 18

347 STEF 3

& STEF -1

TO 188 STEFR S

Loop structures are very easy to visualize and use. There is only one common
error which you must avoid: Do not terminate an outer loop before you terminate an
inner loop. For example, the following loop structure is illegal:

S8 FOR I=1 TO 18

3

If you do not include the index variable in the NEXT statement, then program
logic will automatically terminate loops correctly, since there is orily one possible correct
loop termination each time a NEXT statement is encountered. If you do not believe
this, look again at the complex example illustrated earlier. Then work out some addi-
tional complex examples.

Every program must have the same number of FOR and NEXT statements,
since every loop must begin with a FOR statement and end with a NEXT statement.
For example, suppose there are two FOR statements, but only one NEXT statement.
The second FOR statement constitutes an inner loop which will execute correctly. But
the outer loop has no NEXT statement to terminate it and the program will execute
incorrectly. If you have too many NEXT statements a syntax error will also be gener-
ated.
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SUBROUTINE STATEMENTS

Once you start writing programs that are more than a few statements long, you
will quickly find short routines that get used repeatedly. For example, suppose you have
an array variable (such as A(I)) which is reinitialized frequently at different points in
your program. Would you simply repeat the three instructions that constitute the FOR-
NEXT loop that we described earlier? Since there are just three instructions, you may as
well do so.

But suppose you have to initialize the array and then execute ten or eleven
instructions that process array data in some fashion. If you had to use this loop many
times within one program, rewriting ten to fifteen statements each time you wished to
use the loop would take time; but more importantly it would waste a lot of computer
memory. This may be illustrated as follows:

Start of program — I

}

Repeated routine

N2

_]_}

How about separating out the repeated statements and branching to them?
That is precisely what we will do; the group of statements is then referred to as a
‘‘subroutine.”
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But a problem arises. Branching from your program to the subroutine is simple
enough; the subroutine has an entry line number. But at the end of the subroutine,
where do you branch back to? You could execute a GOTO statement whenever you wish

to branch to a subroutine

Arbitrarily selected

line

Start of program ~——e 1T

GOSUB Statement

numbers
e

0

1

100 GOTO 2000 « _

110

190 GOTO 2000~ ~

200

250 GOTO 2000 ~
260

480 GOTO 2000
500

Subroutine
T 2000 __ — start
>
A
e /
/
/
/
/ 2150 " —end
~
_
7T
o
Return [~ ~
where? ~—-")
Y /

At the end of the subroutine, where do you return to? If two GOTO statements
branch to the subroutine, there are two different places to which you will wish to return
after the subroutine has completed execution. The solution is to use special subroutine
statements. Instead of branching to the suboutine using a GOTO, use a GOSUB
statement. This statement branches in the same way as a GOTO, but in addition it
remembers the next line number. This may be illustrated as follows:

110 GOSUB 2000

110
L4

Subroutine
2000 — start
of
\ s
N 7
~ 7
Remember e
110
2150 RETURN — end
]

Go to
remembered

line number
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End the subroutine with a RETURN statement. This statement causes a branch
back to the line number which the GOSUB statement remembered. The three-state-

ment loop which initializes array A (I) would appear as follows if it were converted into a
subroutine:

18 REM MAIN FPROGRAM

26 REM YOU CAM DIMENSION A SUEROUTINE-S WARIAELE IM THE MAIN
3@ REM PROGRAM. IT IS A GOOD IDER TO DIMEMSION ALL WARIAEBLES
S8 REM AT THE START OF THE MAIN FROGREAM.

£a DIM R(39)

TE GOSUE 2600

2& REM DISPLAY SOMETHING TO FROVE THE RETURN OCCURRED

28 TURETLUREMED"

1aa GOTO led

ZA@E REM SUBROUTINE

FOR I=@& 70 39

ACIN=I
PACIY,

4@ MERT I
A RETURH

Nested Subroutines

Subroutines can be nested. That is to say, a subroutine can itself call another
subroutine, which in turn can call a third subroutine, and so on. You do not have to do
anything special in order to use nested subroutines. Simply branch to the subroutine
using a GOSUB statement and end the subroutine with a RETURN statement. CBM
BASIC will remember the correct line number for each nested return. The following
program illustrates nested subroutines:

18 REM MAIN FROGRAM

26 REM YOU CAN DIMENSION A SUBROUTIME S VARIAELE IM THE MAIN
30 REM PROGRAM. IT IS A GOOD IDEA TO DIMENSION ALL YARIABLES
S8 REM AT THE START OF THE MAIMW PROGRAM.

g8 DIM AC29)

TE GOSUE 2806

2@ REM DISFLAY SOMETHIMG TO FPROVE THE RETURM OCCURRED

26 PURETURMED"

oTD 166

REM FIRST LEYEL SUBROLTIME

FOR I=@ TO 22

ACIa=1

GOSUE 3080

MEXT I

4 RETURN

1 REM MESTED SUEROTIMNE

3 TACID

RETURM

This program moves the ? A (I) statement out of the subroutine and puts it into a nested
subroutine. Nothing else changes.

Computed GOSUB Statement

GOTO and GOSUB statement logic is very similar. The only difference is that
GOSUB remembers the next line number. It will therefore not come as any surprise that
there is a computed GOSUB statement akin to the computed GOTO statement. The
computed GOSUB statement allows you to branch to one of two or more subroutines
depending on the value of an index. Consider the following statement:

=l

188 0N A GOSUE 1000, 500, Sesn, 23600
118
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When the statement on line 100 is executed, if A=1 the subroutine beginning at
line 1000 is called. If A=2 the subroutine beginning at line 500 is called. If A=3 the
subroutine beginning at line 5000 is called. If A=4 the subroutine beginning at line
2300 is called. If A has any value other than 1, 2, 3, or 4, an error message will be re-
ported and the program will stop executing. The computed GOSUB statement remem-
bers the next line number (in this case 110). It does not matter which of the subroutines
gets called, the called subroutine’s RETURN statement will cause a branch back to the
“‘remembered’’ line number, in this case line 110.

You can nest subroutines using computed GOSUB statements, just as you can
nest subroutines using standard GOSUB statements.

IF-THEN Statement

The arithmetic and relational operators which we described earlier in this chapter
are frequently used in IF-THEN statements. This gives a BASIC program decision-
making capabilities. Following IF you enter any expression. If the expression is
‘“‘true,”” then the statement(s) following THEN are executed. However if the expres-
sion is ‘‘false’” the statement(s) following THEN are not executed. Here are three
simple examples of IF-THEN statements:

1@ IF A=E+S THEN FRINT MSG1
4@ IF CC$C"M" THEM IN=A
S8 IF G<14 AMD MCRML GOTO 66

The word THEN is optional; it may be omitted, as in the third example.

The statement on line 10 causes a PRINT statement to be executed if the floating
point variable A value is five more than the floating point variable B value. The PRINT
statement will not be executed otherwise.

The statement on line 40 sets floating point variable IN to 0 if string variable CC$
is any letter of the alphabet in the range A through L.

The statement on line 50 causes program execution to branch to line 66 if floating
point variable Q is less than 14, and floating point variable M is not equal to floating
point variable M 1. Otherwise program execution will continue with the statement on the
next line.

If you do not understand the evaluation of expressions following IF, then refer to
the discussion of such expressions given at the beginning of this chapter.

INPUT AND OUTPUT STATEMENTS

From the beginning of this chapter we have been using the question mark (?) to
create displays. In fact the question mark is a shorthand version of the PRINT state-
ment.

There are a variety of BASIC statements that control the transfer of data to and
from the computer. Collectively these are referred to as input/output statements. The
simplest input/output statements control data input from the keyboard and data out-
put to the display. We are going to discuss these simple input/output statements in the
paragraphs that follow. But there are also more complex input/output statements that
control data transfer between the computer and peripheral devices such as cassette
units, diskette units, and printers. These more complex input/output statements are de-
scribed in Chapter 6.

Since we have already encountered the PRINT statement, let us discuss this state-
ment first.
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PRINT Statement

You can use the word PRINT or a question mark (?) to create a PRINT state-
ment.
Why use PRINT instead of DISPLAY or some abbreviation of the word display?
The answer is that in the early sixties, when the BASIC programming language was
being created, displays were very expensive and generally unavailable on medium- or
low-cost computers. The standard computer terminal had a keyboard and a printer.
Information was printed where today it is displayed; hence the use of the word “print”’
to describe a statement which causes a display.
The PRINT statement will display text or numbers. Text must be enclosed in
quotes. For example, the following statement will display the single word “‘text’:
1@ PRINT "TEXT"
or:
18 FUTERT"
To display a number, you place the number, or a variable name, after PRINT.
This may be illustrated as follows:

@ Ak=18

i=1
S AL

[N R
(]
il i}

The statement at line 20 displays the number 5, and then the number 10 on the same
line.

You can display a mixture of text and/or numbers by listing the information to be
displayed after PRINT. Use commas to separate individual items. The following PRINT
statement displays the words “‘one,” *‘two,”” “‘three,”” **four® and “five,” followed by
the numeral for each number:

i@ ?U0ONE", 1, "TWO".2,"THREE",Z, "FOUR". 4, "FIVE".S

If you separate variables with commas, as we did above, then the CBM com-
puter automatically assigns 10 character spaces for each variable displayed. Try
executing the statement illustrated above in immediate mode to prove this to yourself.
If you want the display to take out empty spaces, separate the variables with semi-
colons, as follows:

18 PRINT “OME":1:"TWO";2; "THREE"; 3: "FOUR" ; 4, "FIVE" .S

Enter this statement in immediate mode and display it to understand how the semicolon
works.

A PRINT statement automatically inserts a carriage return at the end of the
display, unless you suppress it. You can suppress the carriage return by putting a
comma or a semicolon after the last variable. A comma occurring after the last variable
will continue the display at the next 10-character space boundary. To illustrate this,
enter the following three-statement program and run it by typing in RUN:

18 PRINT "OME",1."TWO",2
28 PRINT "THREE",3."FOUR", 4
2@ GOTO 26

Now add a comma to the end of the statement on line 10 and again execute the
program by typing RUN. You will see the two lines of display occur on a single line.
Remember to type RUN on a blank line or you will get a syntax error.
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Now replace the comma at the end of line 10 with a semicolon and again run the
program. The display occurs on a single line, but the space between the numeral ‘2"
and the word *‘three” has been removed. By changing other commas to semicolons you
can selectively remove additional spaces.

We have been illustrating the numerals by inserting them directly into the PRINT
statement. You can, if you wish, display the contents of variables instead. The following
program reproduces the first PRINT statement, but uses variable A%(I) to create digits.
Try entering this program and running it:

1@ FOR I=1 TO S
28 ANCId=I
30 NEXT
4 FRINT “OME™ SAZC10: "TWO" AECE : "THREE" ; AXCED: "FOLRY; 204 )
"FIVE"AX(S)
S8 GOTO Sa
We can put the displayed words into a string array and move the PRINT statement into
the FOR-NEXT loop by changing the program as follows:
2 DATA "OME", "TWO", "THREE", "FOUR", "ETVE"

=0 FOR I=1 TO 5
]

3 READ HE(ID

B PRINT MECII ARCDD
S8 NERT

7a GOTO 7@

The program shown above is not well written. A% (I) can be eliminated, and N$ need
not be an array variable. Can you rewrite the program using N$ and removing A$(I)
entirely?

PRINT Formatting Functions

We use the word ‘‘formatting”’ to describe the process of arranging information
on a display (or a printout) so that the information is easier to understand, or more
pleasing to the eye. Given the PRINT statement and nothing else, formatting could
become a complex and painful chore. For example, suppose you want to display a head-
ing in the middle of the line at the top of the display. Does that mean displaying space
codes until you reach the first heading character position? Not only would that be
tedious and error prone, it would also waste a lot of memory, since each space code must
be converted into an appropriate computer instruction. Fortunately, CBM BASIC pro-
vides three PRINT formatting aides: the SPC, TAB, and POS functions.

SPC Function

SPC is a space over function. You include SPC as one of the terms in a PRINT
statement; after the letters SPC you must include (in parentheses) the number of
character positions that you wish to space over. For example, we could display a heading
beginning at the left-most character position of the display as follows:

18 P'HEADING"

But to center the heading on a 40-column screen display you would first space over 16
character positions as follows:
18 PSPCCLED; "HERDING"

Notice the semicolon after the SPC function. A comma after SPC will start displaying
text at the next 10-character boundary following the number of spaces specified by SPC.
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Any time you include the SPC function in a PRINT statement you simply cause
the next printed or displayed character to be moved over by the number of positions
specified after SPC; no other PRINT statement syntax is changed.

TAB Function

TAB is a tabbing function similiar to typewriter tabbing.

Suppose you want to print or display information in columns. You must first
calculate the character position of the line where each column is to begin. This may be
illustrated as follows:

COLUMN NUMBER

|

0 16 32 48
JONES, P. J 431-25-6277 1420.00 258.74
BURKE, P. L 447-71-7614 2025.00 467.64
ROBINSON, L. W 231-80-8421 2150.00 477.04
etc. etc. etc. etc.

In the illustration above, columns begin at character positions 0, 16, 32 and 48.
(Obviously the computer has an 80-column display or is printing on 80-column paper.)
Now instead of computing space codes as you go from line to line, following each col-
umn entry you simply insert a TAB function in the PRINT statement.

Consider one line of the display illustrated above; counting character positions,
we could display the line without tab stops, as follows:

18 ?UJONES.F.J 431-25-6277 1426, 8@ 258,74

Instead of inserting space codes, we could use the space function and shorten the state-
ment as follows:

But tabbing is easier because you tab to a known column number instead of counting
spaces:

1@ 7Y JOMES.F.J": TREC16); "431-25-6277 " TAE(32); " 1420, 00" TRE(48), "a38. 74"

Note that the entries in the third and fourth columns are numbers which we have
entered as text. Try rewriting the PRINT statement to display these as numbers. The
numbers no longer align as they did when they were displayed as characters (in Chapter
5 we discuss the quirks associated with display formatting). In this case, numbers leave a
space for a negative sign, and they do not display zeros occurring after the decimal point.
That is why there are differences.

POS Function

POS is the last of the PRINT formatting functions. POS returns the current cursor
position. The position is returned as a number, equal to the column number where the
cursor is blinking. You always include a dummy argument of 0 after POS, written as
POS(0).

The following statement demonstrates the capability of POS:

18 PUCURSOR POSITION IS*;POSCE)
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Execute this statement in immediate mode. The display will appear as follows:
PUCURSOR POSITION IS";POSCE)
CURSOR FOSITION 15 18
The cursor was at character position 18 after displaying ‘‘CURSOR POSITION IS.” If
you add some spaces after “‘IS,” and before the closing quotes, you will change the
number 18 to some larger number.

INPUT Statement

When an INPUT statement is executed, the computer waits for input from the
keyboard; until the computer gets the input it requires, nothing else will happen.

An input statement begins with the word INPUT, which is followed by a list of
variable names. Entered data is assigned to the named variables. The variable name type
determines the form in which data must be entered. A string variable name (ending with
a $) can be satisfied only by text input; any number of text characters can be entered for
a string variable. To demonstrate string input, key in the following short program and
run it;

16 INPUT A$
28 A%
3@ GOTO 18

Upon executing an INPUT statement, the computer displays a question mark, then
waits for your entry. The program illustrated above displays any text which you enter, as
you enter it; but the text is displayed again because of the PRINT statement on the next
line. The first display occurs when the INPUT statement on line 10 is executed. The sec-
ond display is in response to the PRINT statement on line 20.

You input integer or floating point numeric data by listing the appropriate variable
names following INPUT. Separate individual entries with commas. The comma has no
punctuation significance in an INPUT statement. The following example inputs a text
word, an integer number and a floating point number, then displays these three inputs.
Enter the program and run it:

18 IMPUT A$.A.AY
26 PA$.A. AN
38 GOTO 16

You must enter a text word followed by a comma, then an integer number
followed by a comma, then a floating point number followed by a carriage return. Any
departure from this input sequence will cause an error; following an error the computer
displays two question marks. You will have to re-enter the data in the correct format. If
the computer then displays a question mark with the message *‘re-do from start,”’ enter
the correct data again.

Now rewrite the PRINT statement so that A$, A and A% are in an order that
differs from the INPUT statement. Rerun the program.

As we discussed earlier, any integers can be represented using a floating point
number. Therefore you can input an integer value for a floating point variable. But you
cannot input a floating point value for an integer variable. You cannot enter text for an
integer or a floating point number, but you can enter a number for a text variable; the
number will be interpreted as characters rather than a numeric value. Try these varia-
tions to satisfy yourself that you understand the data entry options.
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The INPUT statement is very fussy; its syntax is too demanding for any normal
human operator. Just imagine the office worker who knows nothing about program-
ming; on encountering the types of error message which can occur if one comma hap-
pens to be out of place, s/he will give up in despair. You are therefore likely to spend a
lot of time writing “‘idiot-proof>* data entry programs; these are programs which are
designed to watch out for every type of mistake that an operator can make when enter-
ing data. An idiot-proof program will cope with errors in a way that the operator can
understand. Chapter 5 describes data entry programming in detail.

One simple trick worth noting, however, is the INPUT statement’s ability to dis-
play data. Therefore you can precede each item of data entry with a short message telling
the operator what to do. The message appears in the INPUT statement as text between
quotes. A semicolon must occur after the text to be displayed, and before the first input
variable name. Here is an example:

1@ INPUT “"EMTER THE NUMEER 1":M

2@ IF M<>1 THEW GOTO S@

30 TUOK"

4@ GOTO 48

S@ N0, DUMMY, "

£8 GOTO 1@
This program prints a message, then waits for a single data entry. This certainly beats
sticking a bunch of variables into a single INPUT statement, with only your memory
reminding you what to enter next.

GET Statement

The GET statement inputs a single character. No carriage return is needed.

The single character input can be any character that the CBM computer recognizes, or it
may be a numeric value between 0 and 9. Entry will be interpreted as a character if a
string variable name follows GET. Type in the following program and run it:

1@ GET A

28 TR

3@ GOTO 1@
When you run this program, everything will race off the top of the display. Each time
you press a key, it tpo will race off the top of the screen. That is because GET does not
wait for a character entry, it assumes the entry is there. We can make GET wait for a
specific character by testing for the character as follows:

16 GET R#$
28 IF A$C"K" THEW GOTO 1@

3@ GOTO 18

This program waits for the letter X to be entered. Nothing else will do.

GET can also be programmed to wait for any keyboard entry. This program logic
uses the fact that the GET statement string variable is assigned a null character code
until a character is input at the keyboard. The null code is 00 which cannot be entered
from the keyboard, but can be specified within a program, using two adjacent quotation
marks ‘“>’. Here is the necessary program logic:

18 GET A

28 IF A$="" THEN GOTO 1@
8 7AE

48 cOTO 18
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If the GET statement specifies an integer or floating point variable, then the
input is interpreted as a numeric digit. The integer of floating point variable appearing in
a GET statement is assigned a value of 0 until it receives data input. But you can enter 0
at the keyboard. Therefore program logic has no way of knowing whether the 0 repre-
sents a valid entry, or a lack of any entry. This can present problems to programming
logic that checks for an entry, as shown above. GET statements therefore usually
receive string characters.

Programs use the GET statement most frequently when generating dialogue with
an operator. For example, a program may wait for an operator to prove that he or she is
there by entering a specific character (e.g. ‘Y’ for ‘yes’). Here is appropriate program
logic:

18 PRINT "OFERATOR! ARE YOU THERE? TYFE Y FOR YES"

20 GET A¥

28 IF A$C"Y" THEM GOTO 2@

48 FRINT "OK. LET’S GET OM WITH IT"
Notice that this sequence never displays the character entered at the keyboard. Try
rewriting the program so that any character entered for the GET statement is displayed.

PEEK AND POKE STATEMENTS

PEEK and POKE are two CBM BASIC statements that rightfully belong in
Chapter 7, however we will mention them here since we have already encountered the
POKE statement in the course of operating the CBM computer. We used it to access the
computer’s alternate character set.

CBM computers can have up to 65,536 individually addressable locations, each of
which can store a number ranging between 0 and 255. (This strange upper bound is in
fact 22—1.) All programs and data are converted into sequences of numbers which are
stored in this fashion.

A PEEK statement lets you read the number stored in any CBM computer
memory location. Consider the following PEEK statement:

18 AX=FPEEK{Z0E)

This statement assigns the content of memory location 200 to variable A%. The PEEK
argument may be a number, as shown, an integer variable name, or an integer expres-
sion, but it must evaluate to the address of a memory location.

The POKE statement writes data into a memory location. For example the
statement:

Z8 POKE 3008, R%

takes the content of variable A% and stores it in memory location 8000. Each POKE
argument may be a number, a variable or an expression with a value between 0 and 255.
A floating point value is converted to an integer.

You can PEEK into read/write memory or read-only memory. But you can only
POKE into read/write memory. This is self-evident; read-only memory, as its name
implies, can have its contents read, but cannot be written into.
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END AND STOP STATEMENTS

The END and STOP statements halt program execution. You can continue
execution by typing CONT at the keyboard. You do not have to include END or STOP
statements in your program; however these statements do make for tidy programming.

In many of the programming examples given in this chapter we use a GOTO state-
ment that branches to itself in order to stop program execution. For example the state-
ment:

S@ GOTO S

will execute endlessly since the GOTO statement selects itself for the execution. We
could replace this statement with a STOP statement. When a STOP statement is
executed, the following message will appear:

EREFK IN H¥KH

READY
Then execution stops. XXXX is the line number of the STOP statement. If you have
more than one STOP statement in your program, use XXXX to identify which state-
ment was executed.

FUNCTIONS

Another element of CBM BASIC is the function, which in some ways looks like a
variable, but in other ways acts more like a BASIC statement.
Perhaps the simplest way of understanding what a function is is to look at an
example in an assignment statement:
16 A=SERCED

The variable A has been set equal to the square root of the variable B. SQR specifies the
square root function. Here is a string function:

28 C$=LEFT#(DF. 20

In this example the string variable C$ is set equal to the first two characters of string
variable DS§.

Functions can substitute for variables or constants anywhere in a BASIC state-
ment, except to the left of an equal sign. In other words, you can say that A=SQR(B),
but you cannot say that SQR(A) =B.

We have already used four functions. SPC, TAB, and POS are system functions
used with the PRINT statements to format displays. Also, PEEK is a function.

The discussion which follows shows you how to use functions. An incomplete
summary of the available CBM BASIC functions is presented here but complete
descriptions of all functions are given in Chapter 8.

You specify a function using appropriate letters (such as SQR for square root),
followed by arguments enclosed in parentheses. In the case of A=SQR(B), SQR
requires a single argument, which in this case is the variable B. For C$=LEFT$(DS,2),
LEFTS$ specifies the function; the two arguments DS and 2 are enclosed in brackets.
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Generally stated, any function will have one of these two formats:

Single argument for a function
that has just one argument

function (arg1)
function (arg1,arg2)
S — S—

L Two arguments for a function

that needs two arguments

Letters that specify the function

A few functions need three arguments.

Each function argument can be a constant, a variable, or an expression.

A function appearing in a BASIC statement is evaluated before any operators.
Each and every function in a BASIC statement is reduced to a single numeric or string
value before any other parts of the BASIC statement are evaluated. For example in the
following statement:

18 B=24,T#(SOR(CI+53=SIN@, 240

SQR and SIN functions are evaluated first. Suppose SQR(C)=6.72 and
SIN(0.2+D)=0.625. The statement on line 10 will first be reduced to:

18 B=24,7#(6,72+5)-0, 625

Then this simpler statement is evaluated.

ARITHMETIC FUNCTIONS

Here is a list of the arithmetic functions that you can use with CBM BASIC:

INT Converts a floating point argument to its integer equivalent by trun-
cation.

SGN Returns the sign of an argument: +1 for a positive argument, —1 for
a negative argument, O for O argument.

ABS Returns the absolute value of an argument. A positive argument does
not change; a negative argument is converted to its positive
equivalent.

SQR Computes the square root of the argument.

EXP Raises the natural logarithm base e to the power of the argument
(e2rg).

LOG Returns the natural logarithm of the argument.

RND Generates a random number. There are some rules regarding use of
RND; they are described in Chapter 5.

SIN Returns the trigonometric sine of the argument, which is treated as a
radian quantity,

cos Returns the trigonometric cosine of the argument, which is treated
as a radian quantity.

TAN Returns the trigonometric tangent of the argument, which is treated
as a radian quantity.

ATN Returns the trigonometric arctangent of the argument, which is

treated as a radian quantity.

You should start using functions as soon as possible, but do not bother with func-
tions you do not already understand. For example, if you do not understand trigonome-
try, you are unlikely to use SIN, COS and TAN functions in your programs.
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Here is an example that uses an arithmetic function:

A=2. 743
INTCRI+?

3G 7R
4@ 5TOP
When you execute this program, the result displayed is 9, since the integer value of A is
2. As an exercise, change the statement on line 10 to an INPUT. Change line 40 to
GOTO 10. Now you can enter a variety of values for A and watch the integer function at
work.
Here is a more complex example using arithmetic functions:
@ INFUT A.E
3 IF LOGCAY<@ THEM A=1/A
30 TEORCAIFENFCED
48 GOTO 16

If you understand logarithms, then as an exercise change the statement on line 20, re-
placing the LOG function with arithmetic functions that perform the same operation.
The argument of a function can be an expression; the expression may contain
functions. For example, change line 30 to the following statement and rerun the pro-
gram:
6 TEORCAREXFCEI+E)

Now experiment with arithmetic functions by creating immediate PRINT statements that
make complex use of arithmetic functions.

STRING FUNCTIONS

String functions allow you to manipulate string data in a variety of ways. You may
not need to use arithmetic functions that you do not understand, but you must make the
effort to learn every string function.

Here is a list of the string functions that you can use with CBM BASIC:

STRS Converts a number to its equivalent string of text characters.

VAL Converts a string of text characters to their equivalent number (if
such a conversion is possible).

CHR$ Converts an 8-bit binary code to its equivalent ASCIl character.

ASC Converts an ASCIl character to its 8-bit binary equivalent.

LEN Returns the number of characters contained in a text string.

LEFTS Extracts the left part of a text string. Function arguments identify the
string and its left part.

RIGHTS$ Extracts the right part of a text string. Function arguments identify
the string and its right part.

MID$ Extracts the middle section of a text string. Function arguments iden-

tify the string and the required mid part.

String functions let you determine the length of a string, extract portions of a
string, and convert between numeric, ASCII, and string characters. These functions
take one, two, or three arguments. Here are some examples:

STREC14)
LENC"REC">
LEM(RA$+E$)

_EFT#${5T$.,1>
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SYSTEM FUNCTIONS

In the interest of completeness, CBM BASIC system functions are listed below.
They perform operations which you are unlikely to need until you are an experienced
programmer. Perhaps the only system function you are likely to use fairly soon is the
time of day function. If you print many variations of a report (or any other material) in a
single day, it is often a good idea to print the time of day at the top of the report. Then
you can tell the sequence in which these reports were generated.

Here is a list of system functions available with CBM BASIC:

PEEK Fetches the contents of a memory byte.

TIS, T1 Fetches system time, as maintained by a program clock.

FRE Returns available free space — the number of unused read/write
memory bytes.

SYS Transfers to subsystem.

USR Transfers to user assembly language program.

USER-DEFINED FUNCTIONS

In addition to the many functions which are a standard part of CBM BASIC, you
can define your own arithmetic functions, providing they are not very complicated.
User-defined string functions are not allowed. Here is an example of a short program
that uses a DEF FN statement:

1@ DEFFMP ) =100%X
268 INFUT A

20 7R, FMPOAD

468 GOTO 28

Following the DEF FN entry you can have any valid floating point variable name.
In this case we have entered P, therefore the function name becomes FNP. If the varia-.
ble name was AB, then the function name would be FNAB.

In a DEF FN statement, a single variable name must follow the function name,
and must be enclosed in parentheses. This variable name is local to the function defini-
tion; its value is known only inside the DEF FN statement. You can use the same varia-
ble name outside the function, but it refers to a different variable value which is known
to the program at large. The local variable receives its value when the function can, and
usually does, appear in the expression on the right side of the DEF FN statement equals
sign. Other variable names can appear there too. When the function is used via the FN
statement, the expression is evaluated using the newly assigned value of the local varia-
ble and the latest values of any of the variables. The resulting value is used where the
FN statement appeared.
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