Chapter 5

Making the Most of
CBM Features

This chapter describes CBM computer hardware characteristics and programming
techniques.

HARDWARE FEATURES

KEYBOARD ROLLOVER

If you press two or more keys simultaneously, or if you press a second key before
the first character is displayed, a keystroke will be ignored — unless your keyboard has
“rollover.”” Rollover ‘‘remembers’’ a keystroke until it is displayed. Fortunately, CBM
computer keyboards have rollover.

Rollover remembers incoming keystrokes while a preceding keystroke is being
processed. The ‘‘remembered’’ keystrokes are stored in a buffer until they are pro-
cessed. Without this buffer, rapidly incoming keystrokes would be lost. For example, if
keystroke #2 occurs before keystroke #*1 has been processed, the CBM computer stores
keystroke #2 in the buffer until keystroke #1 has been processed. Then keystroke #2 is
taken from the buffer and processed in turn.

Rollover is a very useful feature of the CBM computer keyboard; it allows you to
type in data very fast without the loss of occasional keystrokes.

142 PET/CBM Personal Computer Guia-

KEYBOARD BUFFER

All CBM computers have a 10-character buffer that holds characters when
keys are pressed at the keyboard.

To illustrate, load and run the final version of the BLANKET program, listed in
Figure 5-1. Press a key. While the first display is generated, press up to ten more keys.
then sit back and relax. Each of the ten keyed-in characters will be fetched from the
buffer in turn and displayed by the BLANKET program.

Let us look at this process in more detail.

Whenever you press a key, it goes into the first storage location in the 10-
character keyboard buffer. If you press the A key, this is what happens:

Keyboard
Buffer

1 A

2

3

4

5

6

7

8

9
10

The CBM computer keeps track of the number of characters in the buffer and the loca-
tion of the next character to be displayed. Each time the GET statement fetches another
character, a buffer pointer is incremented to select the next buffer location.

If you press additional keys while the A is being displayed, the additional charac-
ters are stored in the keyboard buffer beginning at the next available location. Suppose
you type in A, and while A is being displayed you type in B, C, D, and E. These charac-
ters are all stored in the keyboard buffer:

Keyboard
Buffer

1 A

D s W N
mlig|olx

Chapter 5: Making the Most of CBM Features 143

FEM #eddbdd E L A M K E T #¥desss
REM COMTIHUQUS—-LIHE DISFLRY OF OHE

=8 REM CHARACTER EMTERED FROM THE

8 REM KEYECOARD

S REM S#3$5faSREss b Eas s s e $ssssessssss

0 FRIMT"HIT A KEY OF < T EHIN

108 GET C#:IF CF="" GOTO 140

1S IF CH#=CHR$13> GOATO 178

11e PRINT"", FEM CLEAF

lag FOR I=1 TO 232a FEM 2z

1za FRINT C#:

148 HEXT

158 PRIMT"FHEW "

leg GOTo =3

178 EMD

Figure 5-1. Program BLANKET

[f you let the BLANKET program continue to run, it will successively display all
the letters stored in the keyboard buffer. After A is finished, the program fetches B and
displays it across 20 lines, then it fetches C and displays it, etc.

If you type in more than ten characters, then for any model with the exception of
the 8000 series, the buffer pointer wraps around, returning to buffer position 1. For
example, if you type in the first 11 letters of the alphabet (A-K), the first ten letters are
stored in the ten buffer locations, then the letter K is stored in the first buffer location,
overlaying the A:

Keyboard
Buffer

K overlays the A

Olo]o| =

O W ® N > O B W N
-n

When the program finishes displaying the A, it returns to fetch another character.
But the CBM computer has already fetched the character in location 1, so it considers
the buffer empty. Keying in exactly eleven characters, or multiples of eleven characters,
produces no additional automatic displays in program BLANKET.

144 PET/CBM Personal Computer Guiac

Typing in 12 to 20 characters displays the first character, and then a string of
characters beginning with character 12. For example, type in A. While A is being dis-
played type in B, C, D, E,F, G, H, I, J, K, L, M, N, O, P, Q,R,S,and T.

1st ten 2nd ten
characters characters
— A K
T _2 8 T L ;:-Next character
3 c M displayed after A
4 D N
5 E O
6 F P
7 G Q
8 H R
9 | S
10 J T

The order of display is: A, L, M, N, O, P, Q, R, S, T.
This logic holds true for additional multiple characters. Type in A, and while A is
being displayed type in the rest of the alphabet. (You will have to be quick to do this.)

1st ten 2nd ten last ten
characters characters characters
— A K u
o —-5 g | L T v ;—:T\ext character

3 C o w displayed ofter A
4] N X
5 E 0 Y
6 F P z | Last character
2 0 Q) displayed
8 H R R
9 | S (s
10 J T mn

A negating effect occurs every 11 characters. For instance, type in A and B, and let
A display completely. Then, while B is displaying, type in C, D, E, F, G, H, I,J, K, and
L. The additional ten characters are cancelled out, just as the additional ten characters B
through K were when entered while A was being displayed.

The CBM 8000 discards input characters which other models wrap around
within the input buffer.

Chapter 5: Making the Most of CBM Features 145

Emptying the Buffer Before a GET

The keyboard buffer is a mild surprise, usually a pleasant one. For program
BLANKET you can save up the characters you want displayed rather than keying them
in one at a time in response to the HIT A KEY message. But the keyboard buffer can
also come as a rude shock. Accidentally pressing a key may cause a program to fetch
an unwanted character from the keyboard buffer. To avoid this, you can program a
loop to empty the keyboard buffer before fetching an intended response character as
follows:

S5 FOR I=1T01& GET CF:HENTI: FEM EMFTY KYED EFF

189 GET C#:IF CF="" GOTO 109
The statements on line 95 empty the keyboard buffer by getting all ten possible buffer
characters.

Edit program BLANKET by adding line 95 as shown above. Now press any com-
bination of keys while a character is being displayed. Any stored characters are fetched
and discarded by the GET loop, so you will not have any automatic continuous display.

STRING CONCATENATION

Within strings the CBM computer will accept alphabetic, graphic, and numeric
characters, or combinations of these. While handling strings, it may be useful to create a
single string by linking shorter strings end to end in a chain-like fashion:

String Al String 1 1! String 2 ; String 3]

Suppose, for example, we want to create one large string, Z$, containing the
alphabet A through Z. To do this we can link together the last character of A$, shown
below, to the first character of J$, and the last character of J$ to the first character of SS.
as follows:

A[B[CIDIEFIGH]IZ BIKILIMIN[OIPIGTRI llll

z$ [ABICIDIE[F[GIRITIIKILIMINOIPIQ RIS[TIVIVIWIX]Y 2]

N

The arithmetic operator * * adds the contents of numeric variables, but when
used with strings the **+°’ concatenates the strings. Table 5-1 summarizes the effect of
the *“+ operator on strings and numbers.

146 PET/CBM Personal Computer Guide

Table 5-1. Addition (+) Operations

= Example F
Sign Type Statemeint: Operation Result
+ numbers P=2+3 2+3 P=5
Q=T+S 12345
- numeric variables | T =[1]2[3[4]5] +11111 Q = 23456
s =011 23456
R$ = A$ + F$ =
+ | alphabetic strings | A$ =[A[B[CID[E] | [A[BICIDIE]__[FIGIH[I[J] | R$ =[A[BICIDIEFFIGIHIY]
F$ =|FIG[H[I]J
Q$=T$ + S$ _
+ | numeric strings T$ =112(3]4l5] | [12[3]4]5)__[1[1[1] | $ =[A[2[3[4[s[[1[1[1[T]
SE =111

A word of caution: strings cannot be separated or broken apart in the same
fashion as they are concatenated; they cannot be ‘‘subtracted’’ the way they are
‘““‘added.” For instance, to create string X$ containing the contents of J$ and S$ from
our original strings A8, J$, S8, and Z$, it would be incorrect to type:

w¥=2%-FA% «———Incorrect

Try it yourself. Enter the values of A$, J$, S$, and X$=Z$— AS$ into the CBM computer
as shown below. The computer will respond with a 7TYPE MISMATCH ERROR IN
LINE 50.

18 A¥="ABCDEFGHI"
28 JE="JEKLMHOPGR"
20 SE="ISTLUNVWEYZ"
48 ZF=AF+TF+SF

S8 X¥=ZF-AF
&8 FPRINT X#

Incorrect attempt to get J through Z string

=LIM

TYFE MISMATCH ERROR IM LINE S&

The only valid arithmetic operator for strings is the addition sign (+). The other
arithmetic operators (—,*,/) will not work, although the Boolean operators (<, >, =)
may be used for string comparison.

The correct method of extracting part of a larger string is to use string func-
tions. With the LEFTS$, MIDS$, and RIGHTS$ functions it is possible to extract any
desired portion of a string. In our example, the letters J through Z can be extracted as
follows:

S@ HE=RIGHT$(Z$.17)
x$ = RIGHT$ [A[BIC[DE[FIGIH[JKILMN[OIPQIRIS[TIUVWIX[Y]Z].17)
x$ = [JK[LIMIN[O[P[Q[RIS[TIUVIWIX[YZ]

or the string may be built by concatenating J$ and S$:
SE ME=TE+SF
x$ = [J[]L[MIN[O]PIQIR]+[SITIUIVIWIX][Y]Z]
x$ =[JKILIMN[C[PIQ[RIS[TIU[V[WIX]Y]Z

Chapter 5: Making the Most of CBM Features 147

Printer/Screen Concatenation

If you want to concatenate strings for screen or printer output only, use the
PRINT statement with semicolon separators (;) between the strings:

FRINT A$:J$; 5%

AECDEFGHI JELMHOPGRSTUN WS Y S

The screen result (A through Z) is not retained anywhere in CBM computer
memory.

GRAPHIC STRINGS

Graphic strings are concatenated in the same way as alphabetic strings. This is a
useful way of creating pictures and diagrams.

NUMERIC STRINGS

A numeric string is a string whose contents can be evaluated as a number.
Numeric strings may be created in two different ways, each yielding slightly different
results.

When numeric variables are assigned to numeric strings using the STRS func-
tion, the sign value preceding the number (blank if positive, ““—"" if negative) is
transferred along with the number. This is shown in the short program below:

16 AB=12345

28 T$=STR$CAE)
36 PRIMT"AE=";AE
48 PRINT"T$=".Ts

RLIN
AEB= 12345
T$= 123245

However, if a number is entered enclosed within quotation marks, or if the number is
entered as a string with an INPUT, GET or READ statement, then the numeric string
is treated like any other alphabetic or graphic string. No blank for a positive sign value
is inserted before the number, This is demonstrated in the following program:

18 AB=12345

28 TE="12345"

28 PRIMT"AE=";AE
48 PRINT"T#=";T$

RLUH

AEBE= 12345 ~———Space inserted
T$=12345+—— _Np space inserted

148 PET/CBM Personal Computer Guide

Let us now concatenate two numeric strings, T$ and Q$, to make a new numeric
string W$. W$ is to contain the ten digits 1, 2, 3, 4, 5, 6, 7, 8, 9, 0. Here is one
possibility:

16 T=12345

28 E=&7e9a

S8 T$§=STR$C(TH

48 QFE=STRECDD

S8 WE=T$+0% «——— Create new string W$
G0 PRINT"WE="; W%

FLIN

Why the blanks before the 1 and 6? T$ and QS were originally positive numeric
variables T and Q; when T and Q were converted from numbers into strings, the blank
sign position was transferred along with the number.

T[d12345 a[g67890
7 [WN[2[3[45 s [¥[e[78[e[o

Therefore, when T$ and QS are concatenated, the new string W$ contains a first-digit
blank, and an embedded blank before the first digit of Q$.

T$ + Q% =

w$
[BN12[3[a[5] [eel7e[el0] [¢[T[2[3[4[5]el6[7[e[s[0]

To get rid of the embedded blanks go back to the separate strings T$ and Q$. Look
again at the contents of T$ and QS above. The only values we want in W$ are the num-
bers to the right of the sign value in both T$ and Q$. With the LEFT$, MID$, and
RIGHTS commands you can select any character or group of characters from within a
given string. We want all the characters to the right of the first character, the first
character being the sign value (either blank or *“—"*). T$=RIGHT(T$,LEN(T$)—1)
does the trick:

Before: After

7$ [g[2[3[4]5] — T8 [1[2[3[4[8]

Since the first digit needed is in the second position of the string, we tell the CBM
computer to use only the values starting in position #2. We can concatenate T$ and Q$
and drop the leading blanks all in one statement:

WS=RIGHT$(T$.LEN(T$) - 1)+RIGHT$(QS$.LEN(QS) -1}
.

" ~"
Drop leading blank Drop leading blank
of T$ of Q%
Concatenate

T$ and Q%

Chapter 5: Making the Most of CBM Features 149

Our example program, amended to eliminate the sign digits, appears as follows:

18 T=12345

T =[412345

28 D=Ersam

Q =[667890
T$=STR$CT
T$ =[g[1[2]3]4]5
40 QF=STR$ECO
as =[u[6[7[e[e[q

SE N$=RIGHT$QT$:LEHfT$J~1?+EIBHT$¢LEN(QI)~1F

Ly
[kx])

WS = RIGHTS(T$.6-1) +RIGHT$(Q$.6-1)
WSE = RIGHTS$(TE.5) +RIGHT$(Q%.5)
W$ =Ts [T2[3[4]5) +Q$

W8 =(112[3[4]s[e[718[slo]
S8 FPRINT “lg=1 s

LI

ME=1224Se7590

INPUT AND OUTPUT PROGRAMMING

The beginning programmer quickly discovers that the input and output sections of
a program are its trickiest parts,

Nearly every Program uses data which must be entered at the keyboard, Will a few
INPUT statements suffice ? In most cases the answer is no. What if the operator acciden-

carefully designed, it will be very difficult to read: as a consequence information could
be misread, or entirely overlooked.

Fortunately CBM BASIC has many capabilities that make it easy to program
input and output correctly. We will describe some of these capabilities before looking
specifically at good input and output programming practices.

150 PET/CBM Personal Computer Guide

PRINT STATEMENT

Semicolon Punctuation

Normally a PRINT statement ends its display with a RETURN. This causes the
next PRINT statement to begin displaying in the first character position of the next line.
Thus the following immediate mode program displays a column of 20 characters in the
first character position of 20 rows:

C#="W":FOR I=1 TO 28:7 CF MEXT ?"FHEW!"

EEEEEETE

2]
FHEW!

READY.
&

A semicolon (;) appearing after any variable in the PRINT statement causes
the next display to begin immediately at the next available character position. A
semicolon following the last (or only) variable in the PRINT statement parameter list
suppresses the RETURN. Therefore the following program will display 800 characters
across 20 rows of a 40-column display.

Chapter 5: Making the Most of CBM Features 151

CE="W":FOR I=1 TO &6@:7? C¥; :NEXT : 2"PHEW !

L b L b L L T L Ll LB LA DR 1 I I L L L L L B L B LA BB

LI LI LI LRI L, [TRIAIT S L WL L L b L L b L b ol B BB 1

r||uunnnuununnnunuununuuunlnnnunnnnunnnnnu-

L b L L R L L b B L L L L L L H R LB 0 D080 0018 11 [IRTNININ RN N NN}

T B L L L L B L G T L L L Ll T F B0 108 10

NSRRI N RININ N AN A AINIA

I RN IB N R IR IR RIA NIl
¥

(B[S AN IR IR IRIRRININTT

N A [T BTR NN RN AR NN ININNIANININ]

B b L B L L L DB Ll LR B0 101 131 LILJ LI LWL LI LT

B L LT G L DL G LT G T 80 B L L L L L L L LT BB B TR 8
LILILIL B b b I L L L L B LB L LB L L L T B T Y 108
LILL u|-rlu||uunnuunnunnnuunnunuunuuunununnunu

FHEW!

RERDY.
]

The FOR-NEXT loop index 1 is used as a counter to indicate the number of W's
to be displayed, in this case 800. On the first PRINT, a new line is begun and the
character W is displayed. The semicolon prevents a RETURN to the next line, so the
cursor remains at the character position following the first W. The second W is then dis-
played and the cursor is left in the next character position, This sequence continues up
to the end of the first line, then the cursor moves to the beginning of the next line. This
sequence continues for 20 lines (of a 40-column display).

Why does PHEW! print on a new line? It doesn’t really; it appears to start a new
line because the last character is displayed in the last position of the previous line.
Change 800 to 780 and PHEW! is displayed at the end of the line of characters. This may
be illustrated as follows:

C$="-":FOR I=1 TO 788 :7C$; :NEXT : 2"PHEW! "

152 PET/CBM Personal Computer Guide

The semicolon concatenates string data, displaying items right next to each other,
with no spaces in between. Numeric data is also displayed in a continuous line format,
but with a single space between negative numbers and two spaces between positive
numbers (since the + sign is not displayed).

To illustrate this, change the string variable to a single-digit numeric variable.
Three character positions are needed to display each number, so change the ending
index to 800/3=267. The number 5 is displayed as follows:

C=+5:FOR I=1 TO 267:7C; :NEXT:2"PHEW!"
S 55 5 5 5 5 5 5 5 5 5 5
S 55 55 5 5 S 5 5 5 5 5 5
5 5 5 5 55 S 5 5 5 5 5 5
5 5 5 5 55 55 S5 5 5 5 5
S 5 5 5 5 5 5 5 5 5 5 5 5 5
S 5 5 5 S 5 5 5 &§ 5 5 5 5
§ 5 S 5 5 5 5 S 5 § 5 5 5

5 5 5 5 5 S § 5 5§ § 5 5 5
S 5 5 5 5§ 5 5 5 S 5 5 5 5
§ 8§ § § § § 5 5 5 5 5 5 °
8 5§ 5 58 5 5 5 5§ 5 5 5
5 5 5% 5 5 5 5 5 5 S 5 5 5

o

o
o
N

Note the single space between the last number displayed and the word PHEW!
This is because numbers are displayed using the following format:

Character position: 12 3 ... x x+1

*nn

S —
-
T
[T—S[‘ml::e
{x—1) digit number
Blank if positive
- if negative

n
I“S{:ace
Single digit number

Blank if positive
- if negative

which for a single digit becomes:

Character position:

————————= |} —

Chapter 5: Making the Most of CBM Features 153

Multiple-digit numbers will scroll the display off the screen unless the TO index is
adjusted. If C is changed to 2001, a 6-digit display field is needed; you should adjust the
TO index from 267 to 800/6=134:

C=2001 :FOR I=1 TO 134:7C; NEXT:?"PHEW!I"
z@el zeel 2001 2081 2001 2001 208
1 2eel1 zeeil zeel 2061 2001 2001 2
@el zeel 2zeel zeel 201 2001 2601
Zee1 2ee1 2eal 2061 2061 20081 208
1 2801 2001 20601 2001 z061 2801 2
001 20801 ze@1 2061 zZe01 2081 001
2ea1 zeel z2eei zeal 2aa1 2061 208
1 2ee1 zeel 2e61 zeel 2001 2001 2
eal 2ee1 20661 2001 2061 2061 2001
2081 201 2001 201 2001 2001 200
1 2061 zeei 2zeel 2061 2001 2001 2
ea1 2061 zeal 2001 2001 2081 2001
2001 ze01 2681 2081 a1 20861 209
1 =z2ee1 2061 2001 20601 2001 2661 2
aa1 2eol 2001 2001 2001 26081 26001
2001 zee1 201 zoel Zzeel 22041 260
1 2ee1 2001 zeei 2861 2061 2681 2
eal 2ee1 2001 2eel 2601 2001 2001
2001 2001 2001 21 2001 2001 200
1 2081 2zeei1 206l 2eel zee1 201 2
681 PHEW!

RERADY.
®

Numbers are/broken across the end of lines. This is because the semicolon (;) generates
a continuous display and nothing but an end of line can cause a return.

Comma Punctuation

Commas appearing after a variable, or at the end of a PRINT statement, treat
the display as though it were tabbed at ten-character intervals. For a 40-column dis-
play this may be illustrated as follows:

1 11 21

LLenmost position=1

In the display program change the semicolon in the PRINT statement to a comma.
This causes numbers to be displayed in four columns on a 40-column display. At four
numbers per line, the TO index will be 4:20=80. When you run this program, note that
the first position in each field is reserved for the sign.

[
—-

154 PET/CBM Personal Computer Guide

C=2001:FOR I=1 TO 8@:7C. :MEXT:?"FHEW!"

2081 2ee1 2081 2aal
2eai z2ea1 2801 zaei
2081 zaal 2861 2881
2881 2aai 2ea1 Zaa1
2aa1 2001 2aa1 2861
2081 2801 20a1 2001
2aa1 2aa1 Zeal zeal
2801 2081 2861 zaal
2eal 2081 20a1 zea1
2ea1 zee1 zeei zaal
2oa1 2061 2eal z2ea1
2ea1 2081 2ea1 261
zZpal1 zee1 2061 zaal
2001 2eal 2081 2081
2eal zZeal 2081 zae1
zee1 zeol 2ea1 Zea]
z@aal el el 2ee1
zeal zeal 2ea1 2aal
Z08a1 2e61 2ea1 2oa1
2081 zeal zZeal Zae1
FHEW!
READY.
#®

Using commas between PRINT statement variables is a convenient way to tab.
Now change the value of C from 2001 to 44. Change the TO index from 134 to
200. Press RETURN and (surprise!) you will get the display shown below.

C=44:FOR I=1 TO 20@:7C; :MEXT:?"PHEW!"
440 442 44 440 442 94 4490 442 44 44@
442 44 440 442 49 440 442 49 496 442
44 440 442 44 440 442 94 4498 442 44
44@ 442 44 440 442 44 446 442 49 440
442 44 4490 442 44 440 442 44 448 442
44 44@ 442 44 440 442 44 498 442 44
440 442 44 448 442 44 490 442 44 440
442 44 440 442 449 440 442 44 448 442
44 440 442 44 440 442 44 440 442 44
440 442 44 440 442 44 440 442 44 440
442 44 448 442 44 440 442 49 440 442
44 490 442 44 440 442 44 490 442 44
446 442 44 44@ 442 44 496 442 49 440
442 44 440 442 44 448 442 44 440 442
44 440 442 49 4490 492 449 440 442 44
446 442 49 440 4492 44 4490 442 44 446
442 44 440 442 49 4490 9492 44 440 442
44 446 442 44 440 442 44 440 442 44
440 442 44 440 442 44 44@ 442 44 440
442 44 440 442 44 4490 442 49 496 442

FHEW | HEW | ¥

RERDY.
i

Some of the digits from the previous 2001 display were not blanked out. CBM BASIC
uses a skip (cursor right) character, not blanks, between fields. When you display
over existing data, characters between fields — or characters in tabbed format — are
not erased. Also note that there is a remaining ““HEW!”’; CBM BASIC displays the
“PHEW!” but leaves the remaining positions of the line just as they were; it does not

Chapter 5: Making the Most of CBM Features 155

blank the rest of the line. This can be a great advantage when you are adding to data
already on the screen, and you should bear this capability in mind. For the display
program line, however, it is leaving extraneous characters in the display.

To remove extraneous characters from the display, you can have the program
clear the screen before beginning a new display. To do this, insert a PRINT CLEAR
SCREEN statement ahead of the FOR-NEXT loop:

C=44 7" ‘FOR I=1 TO 20@:7C$; :NEXT : 7"PHEW! "
Clear Screen (shift of CLR/HOME key)

Now when you press RETURN, you will see the screen blank and the numbers
displayed on the second line.

To begin displaying on the first line, insert a semicolon after the PRINT CLEAR
SCREEN statement.

CE="R": 77" FOR I=1TOE46 2C$. NEXT 2"FPHEMW! "

With the extra line of forty characters, the program can display 840 characters without
scrolling any off the top.

Commas also work when printing strings. As an example, enter the following
immediate mode program to display twenty lines of tabbed character data:

AF="HUF!" B$="TWO!" C$="THREE!" D¥="FOLUR "
FOR I=1 TO 28:7A$.BE.CF, 0% MEXT 2"PHEM! "

CURSOR MOVEMENT

s
In Chapter 3 we discussed the screen editing capabilities provided by the cursor

control keys: CLEAR SCREEN/HOME, CURSOR UP/DOWN, CURSOR LEFT/
RIGHT, INSERT/DELETE, and RETURN.

The CLEAR SCREEN/HOME, CURSOR UP/DOWN, CURSOR LEFT/
RIGHT, and REVERSE Kkeys can be included within PRINT statement strings. The
INSERT/DELETE key and the RETURN key cannot be used within a PRINT state-
ment.

Cursor control keys are interpreted as characters within a string until the PRINT
statement is executed. Consider the PRINT statement:

188 FRINT"#hk"

T—C!uomticm set #2: change program mode to immediate mode
Programmed representation of cursor right
Quotation set #1: change immediate mode to program mode

When this PRINfstatement is executed, you can see the cursor has moved right by the
placement of the asterisks:
RN '
¥ %
To practice simple programmed cursor movement, type in the following program:

10 PRINT” <CLEAR SCREEN >'

20 PRINT” <CURSOR|>* <CURSOR| >* <CURSOR | >®* <REVERSE> < CURSOR| =%
<CURSOR| >®* <CURSOR| >%*"

30 PRINT" <CURSOR | > <CURSOR | > <CURSOR | > <CURSOR| >"

156 PET/CBM Personal Compuser Gange

The program should look like this on your screen:

[PRINT"D":

28 PRIMT" sk msas sl "
S8 PRIMT " alelele)"

48 END

Upon execution, the output should appear as follows:

This may or may not have been what you expected. If you expected the character
sequence:

26 PRINT "aWEHS i
to display the asterisks in a vertical line:
*
*
.
or if you expected the character sequence:
28 PRINT " T
to display three asterisks back up over the original three:

L) b |

13

you forgot about the automatic right movement of the cursor following every
keystroke. The programmed cursor control causes the CBM computer to move the cur-
sor directly up or directly down, but the asterisks will be displayed in a diagonal line due
to thecursor’s automatic advance. Each time a character is displayed, the cursor is auto-
matically advanced one space to the right. This prevents the last character from being
overwritten. The following diagram shows the cursor movement of the previous pro-

gram;
v ol
sy
u<

Automatic cursor advance

To display a vertical line you must compensate for the advance by moving the cur-
sor back one space to the left before moving it up one space or down one space. For
example, the following program statement displays a vertical descending line of three
asterisks followed by a vertical line of three ascending, adjacent asterisks:

26 PRIMT "<CURSOR|> #<CURSOR~><CURSOR|># <CURSOR—>< CURSOR | >#%
<REVERSE > #< CURSOR~>< CURSOR | > %< CURSOR—><CURSOR [> ¥" ;
This will be displayed as follows:
28 FPRIMT" aaa "

Chapter 5: Making the Most of CBM Features 157

If you attempt to program the INSERT/DELETE and the RETURN keys, you will
encounter some surprising results.

The INSERT key is programmable. When you press the INSERT key between a
set of quotes, a reverse capital T displays. Of course the CBM will not appear to insert a
space if the entire line the cursor is on is blank.

The DELETE key remains in immediate mode. Trying to program the DELETE
key in a PRINT statement will merely erase the previous character, unless the DELETE
key occurs within a sequence of inserted characters. The DELETE key is programmable
following an insert, but do not use it in this fashion. It will simply get you into trouble.
There are simpler ways of achieving the same objective in a program.

The RETURN character in a PRINT statement will immediately move the cursor
out of the statement and to the next line.

CHR$ FUNCTION: PROGRAMMING CHARACTERS IN ASCII

If you cannot press a key to include a character within a text string, you can
still select the character by using its ASCII value.

The CHRS$ function translates an ASCII code number into its character equiva-
lent. The format of the CHR$ function is:

PRINT CHR$(xx)

-ASCIl number from O to 255 of
desired character or control

To obtain the correct ASCII code for the desired character, refer to Appendix A.

Scan the columns until you find the desired character or cursor control, then note the
corresponding ASCII code number. Insert this number between the two parentheses of
the CHRS function. For example, to create the symbol *‘$*" from its ASCII code, find
the ASCII code for “*$.”” *“$*” has two ASCII values: 36 and 100. Which value should
you use? Either number works just as well. But for good programming technique, once
you select one number over the other, use that number consistently throughout the pro-
gram. We will use 36 and insert it into the CHRS function as follows:

FRINT CHRECZES
Try displaying this character in immediate mode:

I;RIHT CHRECIE)

Now, try displaying ASCII code 100:
FRINT CHR$C166)
E

The result is the same. Experiment in immediate mode using any ASCII code from 0 to
255.
You can use the CHRS function in a PRINT statement as follows:

18 FRINT CHRE#(36);CHR$(42) i CHRECIE6

RUN
Fi

158 PET/CBM Personal Computer Guide

The CHRS function lets you include otherwise unavailable characters such as
RETURN, INSERT/DELETE, and the quote character (’) among a PRINT state-
ment’s parameters. You may also use the CHRS$ function to do comparison checking
for cursor controls such as RETURN and INSERT/DELETE. Suppose a program
must check characters input at the keyboard, looking for a RETURN key. You could
check for a RETURN (which has an ASCII code of 13) as follows:

18 GET X$:IF H$SSCHRE(1Z) THEN 14
This test would be impossible if you tried to put RETURN between quotation marks:

2@ IF H$O"| RETURHN |"THEM (@

Impossible

This is impossible because when you depress the RETURN key following a set of
quotes, it automatically moves the cursor to the next line:

EE’ IF Kf‘{:}": ~———Press RETURN key
Cursor Controls (CBM 8000)

The screen editor release 4.1, available on the CBM 8000, has two new key func-
tions and some new edit/control capabilities. The key functions are provided by the TAB
and ESCAPE keys. The edit/control capabilities include a programmable bell, line insert
and delete, screen erase, graphic/text switching, and scrolling within a programmable
screen window.

The TAB Key and Tabbing Function. The TAB key operates much like a
typewriter TAB key. The tabbing capabilities of the TAB key are equivalent to the
FAB function. Up to 80 TABs may be set per line. To set a TAB in immediate mode,
move the cursor to the desired screen column, then press the TAB and SHIFT keys
simultaneously. When all tabs have been set, press the RETURN key:

] [Press shifted TAB key

You can program the TAB SET using a PRINT statement. The text string to be
printed must move the cursor to the required column, then execute a TAB SET. The
TAB SET character is generated by pressing the shifted TAB key. This may be illus-
trated as follows:

FRINT"'prepkenenl O vepppperi O
— — S —

4
l TAB SET
' CURSOR RIGHT

A reverse upper-case | is displayed for the TAB SET.
The TAB SET is represented by ASCII value 137, therefore TAB SET can be pro-
grammed using the CHRS$ function:

FRINT"NRRRBI" : CHR$C1IT)

Chapter 5: Making the Most of CBM Features 159

The TAB key advances the cursor to the next tabbed column on the screen. To
tab the cursor in immediate mode, simply press the TAB key. If TAB is pressed beyond
the last tab position on the screen, the cursor jumps to the end of the display line.

When included in a PRINT statement, the tab will occur at the point where the
TAB character is encountered. Here is an immediate mode example:

PRINT" MY[!PET BITES"
Programmed TAB

MY SET EBITES

TAB CLEAR clears a TAB SET position. In immediate mode move the cursor
to the column whose tab set is to be cleared, then press the TAB and SHIFT keys
simultaneously. Following the last TAB CLEAR, press the RETURN key.

TAB CLEAR and TAB SET are both generated by the shifted TAB key. Therefore
if you try to clear a tab in a column where none was set, you will set a tab instead.

Tabs are cleared in program mode using a PRINT statement that moves the cur-
sor to the required column, then executes a TAB CLEAR character:

SRINT"iRRRRRRRRRR R RRRDDRE"

— —) — —
| 3
l —‘_TAB CLEAR

CURSOR RIGHT

TAB CLEAR, like TAB SET, is displayed as a reverse upper-case | character.
TAB CLEAR can be programmed using the CHRS$ function as follows:

SRINT NBRBBI" ; CHR$(137)
CHR$(137) represents the TAB SET and TAB CLEAR characters.

Escape. The ESCAPE key on the CBM 2001/B business keyboard generates an
ASCII code, but has no editing capabilities. On the CBM 8000 keyboard the ESCAPE
key has two functions: pressed in immediate mode it cancels an insert, reverse, or
text entry condition. ESCAPE also allows certain character strings to be interpreted
as screen editing control functions.

ESCAPE can be included in a PRINT statement by using the CHRS function.

Enter:
PRINT CHR$C27)

Control Functions (CBM 8000)

Control functions summarized below are available only on the CBM 8000 com-
puters with the 80-column screen. These functions are defined in detail in Chapter 8.
Some examples of their use are given later in this chapter.

All of these control functions are desgined to improve displays and data entry;
although they can be used in immediate mode, they should not be used to edit pro-
grams. Many of these functions modify the display without simultaneously changing
memory content.

To use one of these functions, its character must appear in a PRINT state-
ment’s parameter list. The function character can be specified within a text string
using a control character, or it may be specified outside of a text string using a CHR$
function. The control character is generated by pressing the ESCAPE key, then the
REVERSE key, then the appropriate unshifted letter key.

160 PET/CBM Personal Computer Guide

Bell. The Bell function works only on a CBM 8000 computer that is equipped with
a bell. The bell will ring automatically on power-up, and whenever the cursor moves
through column 75. If the screen window has been narrowed (using the scrolling win-
dow function) the bell will sound as the cursor passes through the fifth column from the
right edge of the window. The bell is also sounded by a Control-g character, or a
CHRS$(7) function in a PRINT statement.

Delete Line and Insert Line. These functions delete or insert a display line. The
Delete Line function deletes the line on which the cursor is located; all lower lines on
the display are scrolled up one line position. The Insert Line function inserts a line at the
cursor screen location, scrolling all tower lines down; the bottom line is scrolled off the
screen. Neither the Delete nor the Insert Line function modifies computer memory;
only the display changes. The Delete Line function is generated by a Control-u character
or the CHR$(21) function in a PRINT statement parameter list. The Insert Line func-
tion is generated by a Control-M character or a CHR$(149) function in the PRINT
statement parameter list.

Erase Begin and Erase End. These functions erase part of the line on which the
cursor is currently positioned. The Erase Begin function erases all text to the left of the
cursor; the Erase End function erases all text to the right of the cursor. Neither function
moves remaining text. Neither function modifies memory. The Erase Begin function is
generated by a Control-V character or a CHR$(150) function occurring in a PRINT
statement parameter list. The Erase End function is generated by a Control-v character
or a CHR$(22) function appearing in a PRINT statement parameter list.

Graphic or Text. The Graphic function selects graphic characters from the stan-
dard character set, while text characters select upper- and lower-case letters. Also,
spaces between graphic characters are eliminated in order to improve the quality of
graphics. The graphic function is selected by a Control-N character or a CHR$(142)
function appearing in a PRINT statement parameter list.

The Text function is the inverse of the Graphic function. The Text function
selects the alternate character set for graphic characters, while text characters continue
to select upper- and lower-case letters. The Text function is selected by a Control-n
character or the CHR$(14) function appearing in a PRINT statement parameter list.

Screen Window Functions. There are four functions which allow a window to be
defined in the CBM 8000 display, with text scrolled up or down within the defined win-
dow. The Set Top function takes the current cursor location as the top left-hand corner
of the display window; the Set Bottom function takes the current cursor location as
representing the bottom right-hand corner of the window. This window can be canceled
at any time by pressing the HOME key twice, or by executing a PRINT statement with
two contiguous HOME characters in its parameter list. Set Top is selected by the
CHR$(15) function and Set Bottom is set by the CHR$(143) function; these CHRS$
functions should appear in a PRINT statement parameter list following cursor move
characters that correctly position the cursor to define the top left and right bottom cor-
ners of the window.

The Seroll Up function moves text up one line within a window defined by the Set
Top and the Set Bottom functions. A blank line is inserted at the bottom of the window.
The Scroll Down function, likewise, moves text down one line within the window,
inserting a blank line at the top of the window. Scroll Up is selected by a Control-q
character or the CHR$(25) function. Scroll Down is selected by a Control-Q or the
CHR$(153) function. The control character or CHRS$ function must appear in a PRINT
statement parameter list.

Chapter 5: Making the Most of CBM Features 161

POKE to the Screen

You can use a POKE statement to display any character anywhere on the screen.
Simply POKE the character value into the correct screen location in memory.

The CBM computer screen is like a grid of 1000 (or 2000) squares, organized as
25 rows and 40 (or 80 columns). A 40-column display may be illustrated as follows:

1 , Column:n]s : 40

e |

Rows [

et b
I
1
I

961 mrbre 1000

One character may be displayed in each square. Every screen location is assigned an
address and space in memory. Memory screen space begins at address 32768 for square
1 (row 1, column 1) and ends at address 33767 for square 1000 (row 25, column 40), or
at address 34767 for square 2000 (row 25, column 80). Memory address 32768 is screen
location (1,1), address 32769 is screen location (1,2), etc. Figure 5-2 shows the correla-
tion between screen locations and their corresponding memory spaces and addresses.

To find the screen address in memory for any screen location, use the following
equations:

40 Column Screen 80 Column Screen

32768+{column-1}+(40+{row-1)) 32768+ (column-1)+(80+{row-1))

Enter the column and row numbers of any screen position into the equation to find its
memory address. To demonstrate, enter the values 5 and 3 to find the memory address
for the screen location at column 5, row 3:

=32768+(COL-1)+(40+(ROW-1))
=32768+(5-1)+(40.-1))
=32768+4+1{40+2)
=32768+4+80

=32852

Columns

Rows |

I
RIDERE 1
I
!
!
1

; :
t

L T i

25 I f

The memory address for screen location (5,3) is 32852.

162 PET/CBM Personal Computer Guide

This equation makes it possible to POKE characters to the screen without
knowing any more than the column and row number of the location to be POKEd.
Recall the format of the POKE statement:

POKE A X
where:

A is the screen address.
X is the character or variable to be POKEd into A.

Replace A with the screen equation and the computer will calculate the screen address
for you:

POKE 32768+ (COL-)+(40-ROW-1),X
NG o

POKE A X

For instance, if COL (C) and ROW (R) is input as 5,3, and X is input as [#], then a
spade will be POKEd at screen location (3,5), address 32852.
Try entering and executing this program:

1 INFUT

=8 FORE ARES R TSE T8 5B BRI
=32768+(COL-1)+(40+(ROW-1)),X
=32768+(5-1)+(40+(ROW-1)),X
=32768+4+(40+2),X
=32768+4+80,X
=32862,X
11]15 maEnsesasgsass: gesasus: 1
SR e
: S5 DeHaN |
i : e aensaas
t N
|

: IESEEANER R
11T i ITT)| 1

X is entered as a number in the range 0 to 255. The ASCII character correspond-
ing to the entered number will be displayed.

Variables may be used in POKE statements, but the variable must evaluate to a
number within the allowed limits:

POKE 32768+A,X

where: A is a number between O and 999
inclusive (32768+999=33767) for
a 40 column screen
POKE A, X

where: A is a number between 32768 and 33767 inclusive for
a 40 column screen

Chapter 5: Making the Most of CBM Features 163

Using a variable to represent the screen address is wise when POKEing to a
repeating sequence of screen spaces. For example, the program below POKEs the value
of X ten spaces apart across the screen:

AR

I AT

TOGOTD Za

DATA ENTRY (INPUT)

Data entry should be programmed in functional units.

A mailing list program, for example, requires names and addresses to be entered
as data. You should treat each name and address as a single functional unit. In other
words, your program should ask for the name and address, allowing the operator to
enter all of this information and then change any part of it; when the operator is satisfied
that the name and address are correct, the program should process the entire name and
address as a single functional unit. Then the program should ask for the next name and
address.

It is bad programming practice to break up data input into its smallest parts. In the
case of a mailing list program it would be bad programming practice to ask for the name,
process this data as soon as it has been entered, then ask for each line of the address,
treating each piece of the name and address as a separate and distinct functional unit.

The goal of any data entry program should be to make it easy for an operator to
spot errors and to give the operator as many chances as possible to fix errors.

Suppose a program requires a long list of short, identical data items to be input.
Such a list may consist of names, social security numbers, or perhaps dates. It is a good
idea to write a program which accepts such input in blocks. For example, if names must
be entered, the program might allow the operator to enter as many names as will fit in
one vertical column, so that any entry can be corrected while it is still being displayed.
The program would accept and process names as they scroll off the top of the screen.
The alternative would be to write an input program that accepts and processes one name
at a time. But this program would reduce an operator’s chances of spotting and correct-
ing mistakes.

There is one set of circumstances when entering data in blocks is not the best way
to go, and this set of circumstances is a surprising one: it occurs when a very large
amount of data must be entered by keyboard operators. For example, suppose a
keyboard operator must enter hundreds of names and addresses a day. Experience has
shown that the highest volume of accurate data entry can be achieved by having the
keyboard operator ignore all errors on first entry. The data entry program should not
allow for the correction of any errors, even if the errors are detected as data is being
entered. Operators should be trained to ignore errors and carry on entering data as fast
as possible. Such data should be entered twice, preferably by different operators. The
data entry should be compared. The chances of both operators making the same error
are so small that you can count on all errors being flagged as differences between the two
sets of data entry. A subsequent program shoulid allow incorrect data to be corrected.

164 PET/CBM Personal Computer Guide

Interactive Data Input

To demonstrate the value of good, interactive data input we will begin with a very
simple example. Starting with an early version of program BLANKET we will discuss.

step by step, the changes that improve data entry, thereby making the program easier 1o
use.

Start with the program listed below; we will finish with the program as it appears in
Figure 5-1,

8 PRINT O
FOR I=1 7O

28 FRINT C#:

48 MEXT

98 PRINT “PHEW!"

a8 CE="H"
1

oo

3]

The program above will display 800 A’s followed by the exclamation PHEW!
Suppose we want to display X’s instead of A’s.

First eliminate the assignment statement in the program. To delete a program state-

ment, type the line number followed immediately by a RETURN.

LIST 1ee

168 C#="R"

READY.

1@ Type line number. then key RETURN.
LIST

118 PRINT "I

126 FOR I=1 TO &£4@
13@ PRINT C#$:

148 HEXT

15@ PRINT "FHEW!"
READY.
B

Line 100 is no longer in the program. Type in the statement C$=*X"" in immediate
mode, then run the program.

Before RETURN After RETURN
CE=1ir" FHEW!
RERDY. READY.
RLING B

The screen blanks and the word PHEW! is printed, but the X’s are not printed.
Obviously the value of C$ is not being transmitted to the program.

RUN clears all variables to 0 and all strings to null before beginning execution of a
program. So C$ was set to null, and a null character was printed in the program loop (a
“null” is “‘nothing™: it does not print nor does it move the cursor).

Is there a way to transmit the value of C$, entered in immediate mode, to the pro-
gram? Instead of using RUN, which initializes variables, use GOTO 110 (110 being the
line number of the first line of the program). This does not change any variable values.

Before RETURN
CE="ny"

FERDY.
GOTO 11@e

Chapter 5: Making the Most of CBM Features 165

After RETURN

R B BB B B S S BB M
R T R ey
BRI R MM MR I MM BN
B R K R N SRS MMM SIS N M
S M MM S M BB M S MMM M
IS I N M M SIS MMM MMM 8
R N B M M S M S K S M5
BRI R I B MM S MM M S 3
B R R P R B M R H NS M MBI 3
BRI M M M B M M MM S M BB
B N I M B S MM S MBI MM IS B
B M R R K S B B S A Bd
BRI R M S M I B S S S M S
I SR S M B M M M BB M8
R M B K R S S M BB BB S S S
RN M S S MM S B S S MBS
BRI K K M M MM S S B3
SRR MM S M M S M B S BB S B
KEKEKKKRR KRR MR R MR MR M R0 Mo I s S8
BRI MMM I M I N MBS S S MM IS 33
B R M I M I MM I S MM IS M S M
PHEM!

READY.
=

Now the procedure for running the program is as follows:

1. In immediate mode enter the assignment C$="‘‘y”* where y is any display
character.

2. Enter the immediate statement GOTO 110.

There are only two steps in running the program, but the procedure is awkward.
You must type in a line (the assignment statement), and if you enter RUN instead of
GOTO, you must start all over. But the program could fetch the display character
while it is running, using the GET statement. Type in the following line:

1868 GET C#:IF C$="" GOTO 164
List the program and make sure you entered the line correctly. Then run the program.
The screen blanks and the cursor disappears. Press any data key. The character you

enter is displayed 800 times. Run the program again. Press any data key. The display
appears with the new character.

Here is the new procedure for running program BLANKET:

1. Enter the RUN command.
2. Press any key.

This is a real improvement over the original program. However, it is a little dis-
concerting to have the screen completely blank out while it waits for you to press a key.

Add a prompt line to the beginning of the program, asking for key to be pressed. Type in
the line:

3@ TUHIT A KEY"

List the program and check the new line for errors.

166 PET/CBM Personal Computer Guiae

Now the program gives operating instructions. Run the program several times to
display different characters and note how much easier the program is to use.

There is one important modification left to make. If you want to run the program
more than once, go back to the beginning of the program instead of ending it. Then vou
won’t have to type in RUN to reexecute the program. Add the following line:

168 GOTO 29
Again, list the program and check the new line. It should look like this:
LIST
33 PRINT "HIT A KEY"
le@e GET C#: IF C#="" GUTO 1u&
11@ FRINT 03¢
126 FOR I=1 TO &4&
138 PRINT C#.
14@ MEXT
15@ PRINT "FHEW!"
160 GOTO 24
FRERINY.

Now it is even easier to use the program. Enter RUN and follow directions.

Of course, you have to use the STOP key to exit from the program. This can be
eliminated by programming one particular key to terminate program execution. For
example, the RETURN key could be programmed to terminate execution.

Let us see how this is done.

All data keys and cursor control keys can be checked as string characters. For
example, the following statements check for a ‘Y’ character:

19a GET C# IF C#F="" GOTO 1060
195 IF CE="yY" GOTO Za9

RETURN presents a special problem. You cannot reference RETURN as a string literal:

' «—————— Cannot do

ZDC-m>D

This is because any time RETURN is pressed, CBM BASIC stores the program line in
memory and goes to the beginning of the next line. You can, however, use the CHRS
function to check for a RETURN key entry. CHRS allows you to assign an ASCII code
value to a string variable and treat it as a string. The ASCII code value fora RETURN is
13.

Before programming to check for a carriage return, consider what must be done if
there is one. The last line of the program branches back to the beginning of the program.
To terminate program execution, you need to branch beyond the last line. Add the
following line:

ITE EHD
Now add the check for RETURN for program termination at line 105:
i85 IF CE=CHREO1I. GOTO 178

Note that we could have written, in place of line 170 and line 105:
185 IF C¥=CHR$.13) THEM EHI =——Option

Chapter 5: Making the Most of CBM Features 167

If you choose this option, it is generally good programming practice to have the
program termination point at the physical end of the program. It is more difficult to find
termination points embedded in the program.

Without the READY message being printed each time, there are two additional
lines available on the screen. This allows 80 more characters (at 40 characters per line)
to be printed. Change the number of characters on line 120 from 840 to 8§40+ 80=920.
Line 120 will read:

(26 FOR Is1 TO 326

When you run the program, you will find that it is scrolling up one line, leaving a
biank line at the bottom of the screen. This is because CBM BASIC executes a
RETURN after displaying HIT A KEY: it does this to select a new line in preparation for
the next display. We can demonstrate this by making the cursor blink.

Normally you cannot see the cursor because its blinking is inhibited before a pro-
gram is run. However, you can make the cursor blink by adding the following statement
to the beginning of the program:

I8 PORE S42., Cle————Enable cursor

This is a system location that is discussed further in Chapter 7. Run the program
with this line added and you will see the cursor blinking at the bottom line.

FHERN!
HIT A KEY

This program does not really need the cursor, so delete line 80.

To prevent the blank line at the bottom of the screen, add a semicolon to the
PRINT statement in line 90. We should also add a prompt that RETURN is used to exit
from the program. To incorporate these changes, line 90 should now be edited as
follows:

a@ “UHIT A KEY OR CRS TOEHDC.

As a final task, you might read over the program and add remarks. Comment on
how the number 920 was devised; you can optionally put the remark on the same line,
using a colon to separate statements:

128 FOR I=1 Tio 226 TREM 320090=23 LIMES
Add a reminder that the screen is cleared; optionally align the remarks:

N Tia FRIMT O, REM CLERR SCREEM

Fin.ally, add a few lines at the beginning of the program to describe it. The final program
BLANKET is shown in Figure 5-1. Save it on tape or diskette.

Prompting Messages

Any program that requires data entry should prompt the operator by asking
questions. Questions are usually displayed on a single line and demand a simple

response such as ‘‘yes, no,”’ a word, or a number. For example the following
message might be displayed:

D0 YO WA I HE

m
I

HYy CHANGEST

168 PET/CBM Personal Computer Guide

An operator must respond to this message by entering the word YES or the word
NO. Frequently just the letter Y or N suffices. Another common example may give the
operator a number of options. The message:

WHICH EMTRY DO YOU WISH TO CHAMGE™

may allow the operator to enter a number which identifies an entry.

Programs that control this type of dialogue should be written as stand-alone
subroutines which do not depend on knowledge of the calling program. This has three
implications:

1. You cannot assume that the row on which the message will be displayed is
blank. If the row is not blank, then the message will overwrite whatever was
previously there; but worse, the remainder of the line, beyond the message,
will be interpreted as part of the response. This is ugly from the operator’s
viewpoint, but it can also be troublesome. Depending on how your program is
written, remaining characters beyond the message may be interpreted as part
of the data input.

2. The subroutine must receive parameters from the calling program. For exam-
ple, if a message asks the operator to enter a number, then the calling pro-
gram should pass the minimum and maximum allowed numbers to the
subroutine as parameters.

3. The subroutine must return the operator’s response to the calling program.
This variable may be a character (e.g., Y or N), it may be a word (e.g., yes or
no), or it might be a number.

Subroutine logic cannot deduce on which screen row the message is to appear. It is
therefore fair to demand that the calling program position the cursor on the correct row.
You can clear the selected row and position the cursor at column 0 of the row using the
following statements:

28a8 =

AR THE =0 OM 4er1~ THE CURSOR IS5 CURRENTLY POSITIONED
1 ; P VE LHFun TO COLUMM &

For an 80 column screen the statements on line 2020 should write 79 blanks,
rather than 39 blanks as illustrated.

Enter this program into your computer; position the cursor on a blank line be-
tween two lines of text, then type RUN <CR> to execute the program. If all the text
scrolls off the top of the screen then you forgot the semicolon that must terminate the
PRINT statement on line 2020.

Frequently the statements illustrated above will be called as a subroutine, in
which case a RETURN statement must occur on line 2040,

Alternatively you can use the CBM 8000 Erase Begin and Erase End functions:

2808 REM CLERR THE ROM OM WHICH THE CURSOR IS CURRENTLY POSITIONED
2 INTCHRE (IS0 CHREC2ZD CHREC 130 "I

The routine collapses to a single statement. Calling this single statement as a subroutine
would be pointless.

Chapter 5: Making the Most of CBM Features 169

Now look at the subroutine needed to ask a question that requires a reply of Y for
yes, or N for no. We will use a PRINT statement to ask the question, followed by a GET
to receive a one-character response. Clear the row on which the question is to be asked
by calling the clear row subroutine. Here is the program and the called subroutine:

aRe REM CLERR 'H; ROW ON WHIGH
8 PRINTE

THE CURSOR

IF;'EHT Y FPOSITIONED

ASK A QUESTIOM AND RETURN
E ﬂGE
HT"DO YOL ¢
GET 'Wh$:IF YH2
4 PRIMNT'YNE;

S8 RETURM

7O MAKE AMY CHRNGEST
HUYOAMD WMECUY" THEN 3336

You can use the program illustrated above to ask any question that requires a

“‘yes” or “‘no’’ response. The message to be displayed, whatever it may be, must occur
in the PRINT statement on line 3020.

Next consider dialogue which allows an operator to enter a number. We will
assume that the subroutine receives the smallest number in integer variable LO% and
the largest number in integer variable HI%. The subroutine will return the entered num-
ber in NM%. Here is the necessary program:

2608 REM CLEAR THE ROM OM WHICH THE CURSOR I35 CURRENTLY POSITIOMED
28168 PRINTCHRE(132;"7"; :REM MOVE CURSOR TO COLUMH &

2020 FOR I=1 TO 39 PRIMT" " :HEXT

2828 FRINTCHR$C132 ;0"

2@43 RETURN

20G@ REM ASK FOR A HUMERIC SELECTION

3881 REM RETURH SELEETIﬂh IH HNMH

3082 REM NMX MUST BE LESS THEMN HIX AND MORE THAN LOX

2883 REM CALLIMG PROGEAM MUST SET HIN AHD LOX

818 GOSUE 2080

3828 PRINT"WHICH DO YO WANT 70
3830 GET NM$:IF mM#="" THEM 3
2848 MME=VAL CHMED

3838 IF NMHECLON OR NMEZHIXN THEWN 2830
2868 PRINTHME,

2878 FETURM

Write a short program that sets values for HI% and LO%, then goes to subroutine 3000.
Add the subroutine illustrated above and run it. A CBM 8000 version of this program
will replace the GOSUB statement on line 3010 with the PRINT statement on line 2010
of the previous program.

Can you change the subroutine so that it accepts two-digit inputs? Try to write this
modified program for yourself. If you cannot do it, then wait until the next section,
where you will find the necessary subroutine in the program which controls input of a
date.

There is another simple modification you can make to both of the dialogues we
have described; the message printed on line 3020 in both programs could be supplied by
the calling program via a string variable. This would make the subroutines more general

purpose. Can you rewrite the programs to accept a message provided by the calling pro-
gram?

CHANGE ™ .

170 PET/CBM Personal Computer Guide

Entering a Valid Date

Most programs at some point need relatively simple data input: more than a sim-
ple yes or no, but less than a full screen display. Consider a date.

You must take more care with such simple data entry than might at first appear
necessary. In all probability the date will be just one item in a data entry sequence. By
carefully designing data entry for each small item, you can avoid having to restart a long
data entry sequence whenever the operator makes an error in a single entry.

We will assume that the date is to be entered as follows:

MM—DD—YY

| ——] ——
I—Yaar

Separator
Day of the month

Separator

Manth
NMonth

Depending on your personal preferences, the dash separating two digit entries
might be a slash, or any other visually pleasing character. In Europe the day of the
month precedes the month.

Program data entry so that it is pleasing to the operator’s eye. The operator should
be able to see immediately where data is to be entered, what type of data is required, and
how far the data entry process has proceeded. A good way of showing where data is to be
entered is to reverse the data entry field. For example, the program that asks for a date
to be entered might create the following reverse field display:

Cursor flashing at entry
| character position

M--0

tiT
Data must be entered into these

character positions
You can create such a display very simply using the following PRINT statement:

10 PRINT " <Clear> < Cursor| > <Cursor|>"; TAB(20);" <Reverse > bt
<Reverse off > - <Reverse > bl <Reverse off >- <Reverse>
Bl <Reverse off>'';CHR$(13);"" <Cursor| >"";TAB(20);

b represents a space code.

The PRINT statement above includes cursor controls that position the date entry
beginning at column 21 on row 3. Also, the PRINT statement clears the screen so that
residual garbage display does not surround the request for a date. After displaying the
date entry field, the PRINT statement moves the cursor back to the first character posi-
tion of the first entry field by executing a carriage return, CURSOR UP and tab.

Try using an INPUT statement to receive entry of the month. This could be done
as follows:

28 INPUT ME$:

Enter statements on lines 10 and 20, as illustrated above, and execute them. The
INPUT statement will not work. Apart from the fact that a question mark displaces the
first reverse field character, the INPUT statement picks up the rest of the line following
the question mark. Unless you overwrite the entire data entry display — and that

Chapter 5: Making the Most of CBM Features

requires entering a very large number — you will get a RE-DO FROM START message
each time you press the RETURN key.
This is an occasion to use the GET statement:

A SRINTUTING RS20 S i W-d B CHRECIEN UYL TAB(ZED,
T4EN 28

These statements accept a two-digit input. The input is displayed in the first reverse field
of the date. The two-digit input needs no carriage return or other terminating character;
the program automatically terminates the data entry after two characters have been
entered.

Three two-digit entries are needed: one each for the month, the day, and the year.
Rather than repeating statements on lines 20 through 50, we will put these statements
into a subroutine and branch to it three times, as follows:

TUl CHRRACTER INFU

TE CE="Y TdE

e

AEH SETURH

If you have a CBM 8000 computer, try rewriting the program above to use the
TAB SET and TAB functions provided by the Editor release 4.1.

A CBM 8000 version of this program is much simpler because you can use the
CBM 8000 Erase End function, as follows:

3058 F

The variables MM$, DD$, and YY$ hold the month, day, and year entries, respectively.
Each entry is held as a two-character string. As described earlier in this chapter, you
should empty the ten-character input buffer before accepting the first input, otherwise
any prior characters in the input buffer will be read by the first GET statement in the
two-character input subroutine. You only need to empty the buffer once, before the first
GET statement.

There are two ways in which we can help the operator recover from errors while
entering a date.

1. The program can automatically test for valid month, day, and year entries.
2. The operator can be given a means of restarting the data entry.

The program can check that the month lies between 01 and 12. The program will
not bother with leap year, but otherwise it will check for the maximum number of days
in the specified month. Any year from 00 through 99 will be allowed. Any invalid entry
will cause the entire date entry sequence to restart.

172 PET/CBM Personal Computer Guide

If the operator presses the RETURN key, then the entire date entry sequence
restarts.
Our final date entry program now appears as follows:

FOR YALID DAY
Tl OR VALCTCEI DY THEN 18

SR OOUT INPUT BLFEER

Notice that the date is built up in eight-character string DT$, as month, day, and
year are entered.
These three checks are made on data as it is entered:

. Is the character a RETURN?
2. If the character is not a RETURN, is it a valid digit?

3. Is the two-character combination a valid month for the first entry, a valid day
for the second entry, or a valid year for the third entry?

The carriage return has been selected as an abort (restart) character. By replacing
CHRS(13) on lines 60, 160, 230 and 1035 you can select any other abort character.
When the operator presses the selected abort key the entire date entry sequence restarts.
We must check for the abort character in the two-character input subroutine (at line
1035) since we want to abort after the first or second digit has been entered. The main
program also checks for an abort character in order to branch back to the statement on
line 10 and restart the entire date entry sequence. You could branch out of the two-
character input subroutine directly to the statement on line 10 in the calling program,
thereby eliminating the abort character test in the calling program. But this is a bad prac-
tice and we strongly discourage it. Every subroutine should be treated as a logical
module, with specified entry point(s) and standard subroutine returns. Branching bet-
ween the subroutine and the calling program is likely to be a source of programming
errors. If you branch out of the subroutine and back to the calling program without

Chaprer 5: Making the Most of CBM Features 173

going through the return, you are laying yourself open to all kinds of subtle errors that
you will not even understand until you are a very experienced programmer.

Program logic that tests for non-digit characters can reside entirely in the two-
character input subroutine. We have chosen to ignore non-digit characters. Statements
on lines 1016 and 1036 test for non-digit characters by performing comparisons between
the ASCII value for the input character and the ASCII values for the allowed numeric
digits.

Logic to check for valid month, day, and year must exist within the calling pro-
gram since each of these two-character values have different allowed limits.

The statement on line 100 tests for a valid month.

Statements on lines 120, 130, and 140 compute the maximum allowed day for the
detected month. The statement on line 200 checks for a valid day. The check for a valid
year on line 260 is very simple.

Note that we generate an integer representation of the month on line 90, but we
do not bother to generate integer representations of the day or the year. This is because
the day and year are not used very often, but the month is used on lines 90 through 140.
We will save both memory and execution time by using an integer representation of the
month.

It takes more time to write a good data entry program that displays information in
a pleasing manner and checks for valid data input, allowing the operator to restart at any
time. Is the time worth spending? By all means yes. You will write a program once; an
operator may have to run the program hundreds or thousands of times. Therefore you
spend extra programming time once, in order to save operators hundreds or thousands
of delays.

Forms Data Input

The best way of handling multi-item data entry is to display a form, and then
fill in the form as data is entered. Consider a name and address. First display a form as
follows:

L]

Notice that each entry has been assigned a number. The form displays the number
in a reverse field.

The operator enters data sequentially, starting with item 1 and ending with item 5.
The operator can then change any specific data entry.

The following program will clear the screen and display the initial form:

174 PET/CBM Personal Computer Guide

As each data item is entered, create a reverse field to identify the character field
where data will appear as it is entered. Then as each character is entered, display it. The
CURSOR LEFT key is used to restart data entry into the current field. The RETURN
key ends data entry into the current field. The following instruction sequence provides
us with necessary program logic:

T 28 CHRERCTER HAME

Key in the entire program (statement 10 to statement 8310) and run it. Remem-
ber, if you still have statements 10 through 70 keyed into your computer you do not
need to reenter these statements.

If your program does not run correctly, check your entry carefully. In particular,
check for semicolons in PRINT statements.

When you run the program each of the five fields in turn will be highlighted by a
reverse field. As you enter characters they will be displayed in the field. When you press
the RETURN key the entire reverse field is replaced by the data you entered. Try press-
ing the CURSOR LEFT key to restart data entry.

Carefully read through the data entry subroutine, beginning at line 8060 and end-
ing at line 8310. Before going any further you should clearly understand this program
logic.

Note how easy it is for an operator to see what he or she is entering, and how sim-
ple it is to restart any entry to correct errors.

Chapter 5: Making the Most of CBM Features 175

After the complete name and address has been entered, the program should ask
the operator if he or she wishes to make any changes; then the program should ask
which field needs to be changed. Subroutines to ask both of these questions were given
earlier in this chapter. We are going to use modified versions of these subroutines,
where the calling program provides the question to be asked of the operator. Here is the
complete program with added statements beginning at line 250:

18 REM MAME AMD ADDRESS DATA ENTRY

28 REM DISFLAY THE DATA ENTRY FORM

20 PRINT"IIM ENTER MAME AND ADDRESS"

48 FRINT" d1% NAME:"

S@ PRINT" 2% STREET:-"

£8 FRINT" 28 CITY:"

7@ PRINT" 4@ STATE:"; TAB(Z8);"d58 ZIp:"
268 REM GET 28 CHARACTER NAME

8 L MNx=2

188 PRINT"=Nm":TABC18):

118 GOSUE 3086 NAF=CCS

128 REM GET 26 CHARACTER STREET

138 FRINTCHR$(13): TABC1@))

148 GOSUE S000:SR$=CCH

158 REM GET 20 CHARACTER CITY

168 PRINTCHR$C12); TABC18);

1va GOSUE See:Cl$=CCs

188 REM GET 18 CHARACTER STATE

185 LNX=18 ’

198 PRINTCHR$(13>;TABC(18);

208 GOSUR 8000 :ST$=CC$

218 REM GET 5 CHARACTER ZIP CODE

228 LNX=5

238 PRINTTAE(34>; ¢

248 GOSUE Seea:ZI1$=CCs

258 REM ASK IF ANY CHANGES ARE TO BE MADE
268 QU$="D0 YOU WANT TO MAKE ANY CHANGES? "
278 PRINT" Anileielane" .

288 GOSUE 3008

298 JF YN$="N" THEN STOP

368 REM ASK WHICH FIELD IS TO BE CHANGED
316 QU$="ENTER CHANGE FIELD NUMBER ¢1 TO S>: "
328 LOx=1:HIx=S5

338 GOSUB 3508

346 ON NMX GOTO 400,.456.56008.550, 608

48@ REM CHANGE NAME

410 PRINT"=N"; TREC18), (LNZ=20

428 GOSUER 3000:NA$=CC%

438 GOTC 268

458 REM CHANGE STREET

460 PRINT"SXM"; TABC1@); ' LNX=20

47@ GOSUER 2000:SR$=CC$

438 GOTO 268

Sea REM CHANGE CITY

518 PRINT"=MAN"; TAEC18); :LNX=28

526 GOSUEB 8008 CI$=CC#

538 GOTO 268

o558 REM CHANGE STATE

568 PRINT":MIN" : TABC 180 ; :LNX=18

578 GOSUR 800@:S5T$=CC$

See GOTO 268

608 REM CHANGE ZIFP

616 PRINT"=DOeelal" ; TRB(343, : LNX=5

6208 GOSUE 3000:215=CC$

636 GOTO 268

2008 REM CLEAR THE ROW ON WHICH THE CURSOR IS CURRENTLY FOSITICMED
2818 PRINTCHR$(13>; "1, ‘REM MOVE CURSOR TO COLUMN @
2828 FOR I=1 TO 39:FRINT" "i:NEXT

2038 PRINTCHR$(13»;"0",

2043 RETURN

2@ea REM ASK A QUESTICON AND RETURM A RESFOMSE OF Y OR N IN YH$
@16 GOsSUB 2066

2020 PRINTRUS,

3AZE GET YN$:IF YN$COU"N" AND YN$L'YY THEW 38326
28408 PRIMTYMNSE:

176

PET/CBM Personal Computer Guide

RETURMN

REM ASK FOR A HUMERIC SELECTION

REM RETURN SELECTION IN NMX

REM HMX MUST BE LESS THAM HIX AND MORE THAN LOW

REM CALLING PROGRAM MUST SET HIX.LOX AND QU$, THE QUESTION ASKED

4 GOSUE 2008

FRINTRLE;

26 GET MM#$IF MM$="" THEW 3Se@

MME="AL CHMED

4 IF NMARCLOX OR MMXZHIX THEW 3568

PRINTHMS;

RETURM

REM ENTER STRING DATA INTO A FIELD WITH LNX CHARACTERS

REM THE CURSOR MUST BE IN THE FIRST CHARACTER POSITION OF THE FIELD

2828 REM THE RETURM KEY WILL END DATA ENTRY INTO THE FIELD

28 PRINT S CHRFC1Z) " TRBCSTHY

FOR I

G REM THE « KEY WILL RESTART DATA ENTRY INTO THE FIELD

"REM MO VALIDITY CHECKS ARE MADE OW ANY ENTERED DATA
REM THE ENTERED STRING IS RETURNED IM STRING WARIAELE CC#

G STH=FPOSCK) 'REM GET FIELD FIRST CHARACTER POSITION

FRINT"&". REM REYERSE ENTRY FIELD

FOR I=1 TO LHX:PRINT" "; :NEXT

J#
GET C¥ IF C#="" THEN 2128

IF Cg="«" THEM PRINTCHR$C135;"7"; TABCSTH) (GOTO 2678
CEF=CHR$(13) THEN 2280

FRIMTCS, (CC$=CCH+CF

HEST

REM FILL THE REST OF CCF WITH ELAMKS AMD DISFLAY IT
IF TH=LH% THEW 8388

o oT0 LNE

CofE=CCg+ ™

HEXT

FRINTCHR$C130, "7 TRECSTHY S CC$;

F RETURM

Enter the entire name and address program and run it. If it does not work, check
for program errors. Here are some tips when looking for errors:

L.

If the display scrolls off the top of the screen, you forgot to terminate the
PRINT statement with a semicolon in the subroutine that clears a line.

If a reverse field is displayed in the wrong place, you have the wrong number
of CURSOR DOWN shifts in a PRINT statement, or you have tabbed to the
wrong column, or you have forgotten to separate two items in a PRINT state-
ment with a semicolon.

If no message appears at the bottom of the display, make sure that the label
you used in the main program to create the display is exactly the same as the
label referenced in the subroutine which asks a question.

You should study the name and address program carefully and understand the
data entry aids which have been included. They are:

1.

By reversing the field into which data must be entered, you clearly indicate to
the operator what data is expected, and how many characters are available.
When an operator enters a change field number, the reverse field display
again quickly tells the operator whether the correct selection was made.

An operator does not have to fill in all the characters of a field; when the
operator presses the RETURN key the balance of the field is filled with blank
characters.

At any time the operator can restart entry into a field by pressing the CUR-
SOR LEFT key.

Chapter 5: Making the Most of CBM Features 177

5. When questions are asked, only meaningful character responses are recog-
nized: Y or N for “‘yes” and “‘no,” or a number between 1 and 5 to select a
field. It is very bad programming practice to recognize any key other than a
meaningful one. For example to recognize Y for ‘“‘yes’” and any other
character for ‘‘no’’ could be disastrous, since accidentally tapping a key could
take the operator out of the current data entry prematurely. Conversely,
recognizing N for “‘no’’ and any other character for ‘‘yes’ would cause the
operator to unnecessarily reenter data into some field, just because the opera-
tor accidentally touched the wrong key.

Here are some data entry precautions which we have not taken but could add:

1. Check the ZIP code for any non-digit entry. Similar codes outside the USA do
allow alphanumeric entries, however.

2. Many cautious programmers will ask the question ARE YOU SURE? when
an operator types ‘‘no’’ in response to the question DO YOU WANT TO
MAKE ANY CHANGES? This gives the operator a second chance in the
event that he or she accidentally touched the wrong key.

3. We might add an additional key which aborts a current data entry and restores
the prior value. For example, if the operator presses the wrong number to
select a field which must be changed, the current program forces the operator
to re-enter the field. We could easily add another key which aborts the current
data entry and retains the previous entry.

Try modifying the name and address entry program yourself to add the additional

safety features described above. Also, if you have a CBM 8000 computer, try using its
TAB SET capabilities instead of the TAB functions.

PROGRAMMING DISPLAYS AND PRINTOUTS

When you power up a CBM computer, output is directly to the display. You
must execute appropriate statements to send the output to the printer or any other
device capable of receiving output.

There are a number of differences in the programming techniques required to
create a screen display as compared to a hard copy printout. For example, the printer
may be wider than the display, in which case output which will fit on a printed line will
run over the display line. But there are also significant differences in programming logic
which you must use to format a printout as compared to a screen display. This is because
cursor control keys can be used to move the cursor around the screen display, but they
cannot be used to move a print head around a piece of paper.

There are also many similarities in the programming techniques used to create
printouts and displays. The discussion that follows applies to displays only. If you are
planning to write programs that generate output at a printer you should read the dis-
cussion of display outputs given in this chapter, and then proceed to the discussion of
printer programming given in Chapter 6.

Programming display output is much simpler than programming data input, since
there is no operator interaction to worry about. You must make sure that the display is
easy to read, and that is all. Here are a few rules to follow:

1. Avoid crowding too much information into a very small space.

178 PET/CBM Personal Computer Guide

2. Ifnumbers or character strings are listed in columns, align the data so that the
eye can quickly run down the column.

3. Use reverse fields on displays to highlight key information, top heading, and/
or side headings. Do not reverse fields on printouts; the printer generates
very illegible reverse fields.

Below are some common mistakes which you should be aware of, and therefore
avoid, when programming displays:

I. Remember to follow individual items in a PRINT statement with a semi-
colon(;) unless you specifically want the spacing provided by commas (,).
This is the most common source of errors in output programming.

2. You will save a lot of programming time if you first get a piece of graph paper,
section off rows and columns, then draw the display before attempting to pro-
gram it. This will allow you to compute rows and columns accurately. The
alternative is to use trial and error, which in the end will take a lot more time
than drawing the display first.

3. Watch for array subscripts which do not divide evenly into columns. For
example, suppose you have 25 items in array N$(I) which you are printing in
3 columns. You might be tempted to generate the display as follows:

(88 FOR I=1 TO 25 STEP 3
a8 REM PROCESS COLUMN 1

J8E REM PROCESS COLUMN 2
483 REM PROCESS COLLMN 2

S0 HEXT I

But on the final pass of the FOR-NEXT loop, indexes 26 and 27 will be com-
puted, although they do not exist. You can easily check for the end of an array
in a FOR-NEXT loop as follows:

18 FOR I=L0O TO HI STEFP ST

358 I=I+1
6@ IF IXHI THEM Soe

SEE HEXT

An important warning applies to data which you read from a disk file (using tech-
niques which we will describe in Chapter 6). CBM computers have a nasty habit of
adding blank characters onto the end of string variables which are read from a disk
file. For example, if you write names to a disk file, knowing in advance that no name
has more than 20 characters, you might assume that when you read these names back
from the disk file, each name will still have 20 characters or less. That is not necessarily
the case. Some variable number of additional blank characters may get tacked onto the
end of the string variable. This can distort your display or printout by extending a field

Chapter 5: Making the Most of CBM Features 179

beyond the column to which you will next tab. You can avoid this problem by using the
LEFTS function. Therefore a PRINT statement such as:
188 PRINT TAECS)YN$CI) TAEC3E) i NSCI+10

would have to be rewritten as follows:
188 PRINT TRAB(S);LEFT$CNFCI, 290 TREC3@) i LEFTECHSCT+10, 280

If a list of variables has unknown string lengths, and you want to convert all
variables to some fixed length, then you must add blank characters to the end of short
strings, and truncate long strings. This is easily done by the following subroutine:

18 REM STRIN M$ IS5 TO BE 28 CHARACTERS LONG

Z8 REM IF L THAM 28 CHARACTERS. ADD I°F-ILINJ’- ELANKS
33 REM IF MORE THAKM AB CHARACTE 53 CHARARCTERS
La=LEMIHE) tREM '_!i—?-iL”".EEFl Dl—‘ HF'HET—F'“: IN
EM bB¥ I; H III.IP‘N':'

S
G OWYRRI

8 Bg="

LT R M 5
oS

THEM ME=LEFTF(MSE, 2@
IF | THEN RETURN REM MF HAS CORR
NE=NE+LEFTHCES, 20-L20) REM M§ 15 SHORT.
RETLIRN

When dealing with large quantities of data, a very common technique is to
create a ‘“‘window’’ in which to enter the data. In order to provide a simple demon-
stration, we will create a double-dimensioned 14 X 50-integer array variable, Each
integer in the array will contain a four-digit number which identifies the array coordi-

nates as follows:

£ X%(0,d) = 010J
For example:

X%(3,2) = 0302
X%(19,8) = 1908
X%(11,12) = 1112
etc.

We can create this integer array very simply, as follows:

Now we will display some portion of this array. We will use the top two rows and
columns 1 through 10 to create header displays as follows:

e I:E@EIE:H:W:

1

T
IENSESNNENENaNEENS

T

T

T T

XX represents a number in the range 1 through 14
YY represents a number in the range 1 through 50

180 PET/CBM Personal Computer Guide

Here are the necessary program statements to create reverse field row and column
headers as illustrated above:

wEM CRERTE RO AND COLUMH HERDERS
RIMTTRECD):
—HF I=1 70 3

FRI HT " COLUmpme |
MEXT

“RIHT |HPI'£

VS D T D D S D D

YIETRECI)

INT
HERT
1158 RETURN

.
Lt

We deliberately create a window that is smaller than the entire screen so that we
can better illustrate the concept of a window on data. There is nothing to stop you creat-
ing a window that occupies your entire.display, however there will be occasions when
you want a small window so that concurrent data can appear on the screen.

The STRS function creates a display that is one character longer than the integer
number. This extra character represents the sign. We could remove the sign, but we
choose instead to display this extra character in reverse field. But we must account for its
presence when counting character positions in order to set the tab on line 1130.

We will now add instructions that ask the operator to enter two numbers repre-
senting the smallest column and row of the array. The array element with this column
and row number will appear in the top left-hand display position. The display will be
filled with adjacent column and row elements, up to the end of the display. Add these
lines to your program:

S REM WIMDOW OM A TABLE DISFLAY PROGRAM
16 DIM KE(14,58)

26 FOR I=1 TO 14

36 FOR J=1 TO 56

46 KH(1, I)=1%166+]

5@ NEXT

&8 MEXT
&4 PRINT“"J":

76 INFUT “ENTER COLUMN ¢1 TO 123:";C%
B8 IF 021 OR C2>12 THEN PRINT'; (GOTO 79
98 INPUT "ENTER ROW ¢1 TO 41):";R¥

lga IF REC] OR_Rx>41 THEN PRINT"T: :GOTO 2@
185 PRIMT"I": :GOSUE 1088

118 PRIMT" =iim";

128 FOR I=RX TO RE+2

128 PRIMT TAB(3):

148 FOR J=CX TO CH+2

158 HE=STREF(RN(I. 12>

155 PRINTSPCC1G-LENCKE) D KE

168 NEXT

165 PRIMTCHR$(13);

178 NEXT

186 PRINT"MEMCONMTINUE? ENTER % OR N "
198 GET C#: IF C$L>"Y" AND C#HLO"N" THEN 138
266 IF C#="Y¥" THEN &5

218 STOP

Run the program. If you entered it correctly, the first thing you will notice is that
the computer stops and appears to do nothing for a while; it is executing the nested

FOR-NEXT statements occurring on lines 20 through 60. It takes 10 or 15 seconds to fill
array X% with numbers.

Chapter 5: Making the Most of CBM Features 181

The PRINT statement on line 64 clears the screen so that any prior garbage is
eliminated before INPUT statements on lines 70 and 90 ask you to enter the beginning
row and column numbers. We do not put this clear command into the PRINT statement
on line 65, since the program returns to line 65 in order to ask for new column and row
numbers, at which time we do not want to erase the prior display.

Note that column numbers from | through 12 are allowed; there are three col-
umns, therefore any column number up to 12 will stay within the limit of 14 columns.
Row numbers from 1 to 41 are allowed, likewise, since ten columns are displayed, which
means that the highest ten column numbers would be 41 through 50.

The integer value from array X% is converted into an ASCII string on line 150
before being printed on line 155. This conversion has been made to simplify display for-
matting. It is easy to compute the number of spaces between columns, as shown by the
PRINT statement on line 155. It is not so easy to align numbers correctly when display-
ing integers. To prove this for yourself, remove line 150 and change line 155 as follows:

155 PRINT SPCIS) XA, 10

Numbers will align providing you do not display any four-digit numbers, in which case
the display will overflow a 40-character screen. If you display three-digit numbers the
rows are all shifted over one column to the right. You could correct this discrepancy by
increasing the tab on line 130 from 9 to 10. Try it. When you next run the program it will
overflow the 40-column display line and give you a lot of extra carriage returns.

Notice that the statements which ask for input on lines 70, 90, and 180 are all
followed by program steps that disallow all invalid inputs. Even in this simple demon-
stration program we take the time to program safe input.

A useful refinement to a program that displays a window on an array is to provide
the operator with a means of moving the window up or down, left or right. This is easily
done. Using available symbols on a CBM standard keyboard, we will use the spade sign
(*) to move up one row, which means that the beginning row number is decreased by 1.
We will use the heart sign (#) to move down one row, which means that the beginning
row number is increased by 1. We will use the less than sign (<) to move the table one
column to the left (decrease the beginning column number by 1), and use the greater
than sign (>) to move the table one column to the right (increase the beginning column
number by 1). To accomplish this task we must replace statements on lines 180 through
210 with the following statements:

186 PRINT"MWMCONTIMUE? ENTER #.@,<.2.% OR N ")

199 GET C$: IF C$="" THEN 198

2@@ REM IF C$=ATN THEN DECREASE ROW BY 1

219 IF C#="#" THEN R¥=R¥-1:PRINTCHR$(13)>;"M"; :GOTO 166
226 REM IF C$=COPY THEN INCREASE ROW BY 1

228 IF C#="e" THEN R¥=R¥+1:PRINTCHR$(13);"N"; :GOTO 168
248 REM IF C$=C THEN DECREASE COLUMN BY 1

258 IF C#="<" THEN CX%=Cx-1:GOTO 300

268 REM IF C$=> THEM INCREASE COLUMM BY 1

276 IF C#=">" THEN C¥%=Cx+1:GOTO 30@

286G REM IF C#=Y,ENTER MEW ROW AND COLUMN IF C#$=M.STOF
298 IF C$="¥" THEN 65

295 IF C$="N" THEN STOF

2% GOTO 19@:REM REJECT ANY OTHER C$ IMFUT

388 IF CH<1 OR CH>12 THEN PRINTCHR$(13)>, :GOTO 7@
218 GOTO 1@5

	Chapter5.BMP
	Chapter50001.BMP
	Chapter50002.BMP
	Chapter50003.BMP
	Chapter50004.BMP
	Chapter50005.BMP
	Chapter50006.BMP
	Chapter50007.BMP
	Chapter50008.BMP
	Chapter50009.BMP
	Chapter50010.BMP
	Chapter50011.BMP
	Chapter50012.BMP
	Chapter50013.BMP
	Chapter50014.BMP
	Chapter50015.BMP
	Chapter50016.BMP
	Chapter50017.BMP
	Chapter50018.BMP
	Chapter50019.BMP
	Chapter50020.BMP
	Chapter50021.BMP
	Chapter50022.BMP
	Chapter50023.BMP
	Chapter50024.BMP
	Chapter50025.BMP
	Chapter50026.BMP
	Chapter50027.BMP
	Chapter50028.BMP
	Chapter50029.BMP
	Chapter50030.BMP
	Chapter50031.BMP
	Chapter50032.BMP
	Chapter50033.BMP
	Chapter50034.BMP
	Chapter50035.BMP
	Chapter50036.BMP
	Chapter50037.BMP
	Chapter50038.BMP
	Chapter50039.BMP
	Chapter50040.BMP

