Chapter 6

Peripheral Devices:
Tape Cassette Drives,
Diskette Drives and Printers

A computer system contains more than a keyboard, a screen, and the computer
itself. To avoid keying in a program every time you want to run it, you will store the
program on a floppy disk or magnetic tape cassette. As described in Chapter 2, you can
then load the program into memory and run it, thus avoiding repeated key entry.

You will also store data on magnetic tape cassettes or floppy disks. Consider a
mailing list program. This program will be stored on a cassette or floppy disk. A mailing
list program is used to create a list of names and addresses. The list of names and
addresses is also stored on cassette or floppy disk. Later the names and addresses are
read off the cassette o: floppy disk in order to print mailing labels. But that requires a
printer.

Most computer systems include a line printer. Line printers are used to print
output, such as mailing labels. Also, a line printer is indispensable if you want to write
programs. The most efficient way of changing or correcting a program is to print a listing
of the program as it currently exists, mark intended changes to this printed listing, then
enter the changes that you have written down.

In this chapter we are going to describe CBM BASIC program logic needed to
handle cassette drives, floppy disk drives, and printers.

CBM computers have an IEEE 488 bus connector. This is an industry standard
bus which is used by the floppy disk drives and the printer. The IEEE 488 bus is also
used by instruments and sundry electronics in industrial applications. Although we de-
scribe floppy disk drives and printers, this book does not describe the IEEE 488 bus
itself, or programming required by any instruments connected to it.*

*To learn about the IEEE bus, see PET and the IEEE 488 Bus (GPIB) by Eugene Fisher and C. W. Jensen,
Osborne/McGraw-Hill, 1980.

232 PET/CBM Personal Computer Guide

STORING DATA ON MAGNETIC SURFACES

THE CONCEPT OF A FILE

Information is stored as ‘‘files’’ on cassettes or diskettes.

In order to understand the concept of a “*file,”” think of a bookshelf. The cassette
or diskette is the bookshelf; each book on the shelf is equivalent to a file.

To a computer user, a “*file” is a very simple concept. When you “‘open’’ a file, all
information stored within the file becomes accessible. The information remains accessi-
ble until you “‘close’ the file. This is much like taking a book down off the bookshelf
and opening it up. But unlike the book, writing to a file is as easy as reading from it.
When the computer writes a program or data to a cassette or diskette, it creates a new
file, or it adds to an old file.

A file can have any size, limited only by the capacity of the cassette or diskette.
You can create a new file and put nothing in it, in which case the file is empty. This is
equivalent to having a book with covers, but no content. A file must fit on a single tape
cassette or floppy disk, therefore the maximum size of a file depends on the storage
capacity of the cassette or floppy disk.

You can have up to 256 files per diskette; there is no limit per cassette. Of course,
if many files are stored on a single diskette or cassette, the individual files will have to be
very short.

The amount of memory in your CBM computer has no impact on the size of a data
file. A data file may be much larger than available computer memory. Having *‘opened”
a data file, you can read one character from it, or as much information as will fit in the
available computer memory. When writing to a data file, information that you output
from computer memory can be, and usually is, added to data already stored on the
cassette or floppy disk.

Program Files

There are two types of files: program files and data files. A program file, as its
name would imply, contains program statements.

You create a program file whenever you SAVE a program on diskette or cassette.
You read a program file when you LOAD a program into memory. These operations
were described in Chaper 2.

Every file can have a name assigned to it; the name which you assign to a program
file will become the name of the program. CBM computers recognize file names of up
to 128 characters, but only the first 16 characters are displayed. Disk file names
must have 16 or fewer characters. Therefore, it is a good idea to restrict all file names
to 16 characters or less.

The amount of memory in your CBM computer does affect the maximum size of
a program file. This is because you create a single program file when you SAVE a pro-
gram on cassette or diskette. When you load a program into memory, you load the entire
contents of a program file. You cannot load part of a program file into memory.
Therefore the maximum size of the program file must be less than the program memory
capacity of your CBM computer. If you have a very long program, and it will not fit in
the available computer memory, you can break it up into a number of files, each of
which will fit in the available memory space. When each section of the program com-
pletes execution, you simply load the next section into memory and run it; in this

Chapter 6. Periphera. Desices 233

fashion you get to execute the entire program. Later in this chapter we will describe the
programming steps needed to execute large programs in this fashion.

An advantage of program files is that you do not need to know anything about
their internal organization. When you save a program on diskette or cassette, it becomes
a file which you can subsequently load back into memory. You must be able to identify
the program file (via its file name or its location) in order to load the file back into
memory, but that is all.

Data Files

A data file, as its name would imply, centains information which gets
interpreted as data, in contrast to program statements. Data files are created, written,
and read by programs.

Records and Fields

Data files are divided into ‘‘records,” which in turn are subdivided into
“fields.”

A single field contains information which can be represented by a single variable
name. Therefore a single field can contain an integer number, a floating point number,
or a single string variable.

A record contains one or more fields. Records usually represent units of repeated
information within the file. but this does not have to be the case.

Consider a mailing list. The entire mailing list will become a single data file. Each
name and address within the mailing list will become one record within the file. If names
and addresses are entered using the program described in Chapter 5, then each record
will contain five fields: the name. the street. the city, the state, and the zip code. This file
organization is illustrated in Figure 6-1.

A file may contain one or more records. Each record may contain one or more
fields. The number of records in a file and the maximum length of a record varies with
the type of file, as described later in this chapter. However, for all practical purposes
the size of a file is limited only by the capacity of the diskette.

No restrictions are placed on the length of tape cassette records. A record can
have any length that will fit on the tape cassette.

DATA TRANSFER TO AND FROM CASSETTE AND DISKETTE

A novice accessing tape or diskette data files is frequently mislead into thinking
:~at something is wrong. One would instinctively expect the tape or disk unit to move in
-zsponse 1o every statement that reads from the unit, or writes to it. A cassette drive
<~ - .3 move the cassette: a disk drive should activate the diskette. Sometimes you will
.2z «_2h activity; at other times you will see no activity. This is because a small amount
«¢ memory acts as a data buffer connecting the computer with the cassette or disk

- == “he computer reads from one of these drives, enough data is read to fill the
-_:- - _ a7 see no further drive activity until a program accesses data that is not
- -z huffer,

234

PET/CBM Personal Computer Guide

Part of a
Mailing list file

Name (n - 1)}

Street (n — 1)

Record n — 1 City {n ~ 1}

State {n - 1)

ZIP {n - 1)

Name (n)

Street (n)

Record n City (n}

State (n)

ZIP {n)

Name (n + 1)

Street {n + 1)

Record n + 1 City {n + 1)

State (n + 1)

ZIP (n + 1)

Name (n + 2)

Street {n + 2)

Record n + 2 City {n + 2)

State (n + 2)

ZIP (n + 2)

Name (n + 3)

Street (n + 3)

.
.
.

Field 1
Field 2
Field 3
Field 4
Field 5
Field 1
Field 2
Field 3
Field 4
Field &
Field 1
Field 2
Field 3
Field 4
Field 5
Field 1
Field 2
Field 3
Field 4
Field 5
Field 1
Field 2

Figure 6-1. Conceptual lilustration of Four Records

in a Mailing List File

Chapter 6: Peripheral Devices 235

Data being written to a cassette or disk drive is first written to the data buffer. As
soon as the data buffer is full, all the contents of the buffer are output to the cassette or
diskette, at which time you will see some activity. You will see no further activity until
the buffer is again filled.

The cassette drive buffer is located in CBM computer memory. It is 192 bytes iong
and holds 191 bytes of data. The diskette drive buffer is located in the diskette unit itself,
not in CBM computer memory. Each diskette drive buffer is 256 bytes long and holds
254 bytes of data. The diskette and cassette buffers are relatively large. In consequence,
drives are inactive for much of the time while the computer is accessing drive buffers to
read or write data.

Logical Files and Physical Units

We use the term ‘‘input/output programming’’ to describe program logic that
transfers data between the computer and external physical units. Disk drives,
cassette drives and printers are all external physical units.

In order to perform any input/output operation, program logic must identify the
external physical unit being accessed; that will come as no surprise to you. But what
about the computer end of the data transfer? This end cannot simply be specified as
“the computer.”” Think of the problem in programming terms; programs identify data
as variables or constants within BASIC statements. Therefore, the computer end of the
data transfer must be specified in similar program logic terms. This concept is easy to
understand if you think of the CBM computer keyboard and display as external
physical units (which in fact they are). When an INPUT statement is executed, data
which you input at the keyboard gets assigned to variable(s) whose name(s) are
specified as INPUT statement parameter(s). For example, when the statement:

10 INPUT A

is executed, some number which an operator enters at the keyboard is assigned to float-
ing point variable A. The PRINT statement, likewise, will output variables (s) or con-
stant (s) to the display. Thus the PRINT statement:

20 PRINT A

takes the value assigned to floating point variabie A and outputs this value to the dis-
play.

Thus the INPUT and PRINT statements have specified the computer end of the
data transfer using a variable name, in this instance floating point variable A. When an
INPUT statement is executed, the external physical unit is assumed to be the keyboard.
When a PRINT statement is executed, the external physical unit is assumed to be the
display.

Input/output programming becomes more complex when data is transferred to
or from cassette drives, disk drives, printers, and external physical units other than
the keyboard and display. For these more complex input/output operations you must
first open a ‘‘channel”’ between the program and the selected physical unit. After per-
forming required input/output operations you must close the channel. CBM BASIC
identifies individual channels using a channel number which can range between 0
and 2585.

236 PET/CBM Personal Computer Guide

You OPEN a channel using the CBM BASIC OPEN statement; statement
parameters identify the physical unit being accessed, and the nature of the access, as
illustrated in Figure 6-2. Until the channel is closed, any input or output statement need
only specify the channel number in order to fully describe the nature of the input or out-
put operation.

Every physical unit has its own, unique physical unit number. This number is
used as a parameter when opening a channel in order to identify the physical unit to be
accessed. Channel numbers have no equivalent permanent assignments. Channel
numbers are therefore frequently referred to as ‘‘logical file”” numbers, or ‘‘logical
unit’’ numbers.

The name *‘logical file’’ describes a channel very accurately, since a channel es-
tablishes a link between a program and a data file.

Logical file numbers are a programming concept. As illustrated in Figure 6-2, you
initiate any input or output operation using an OPEN statement. One of the OPEN state-
ment parameters is a channel, or logical file number; other OPEN statement parameters
identify the physical unit, the data file being accessed, and the way in which the access is
to occur. After the input or output operation has gone to completion, you execute a
CLOSE statement which closes down the channel. The CLOSE statement requires just
one parameter: a channel or logical file number. This logical file number links the
CLOSE statement to an OPEN statement. In between the OPEN and CLOSE state-
ments, all input and output statements use a channel or logical file number to identify
the device being accessed, and the way in which the device is being accessed.

100 OPEN N, [Additional parameters identify physical unit
to be accessed and nature of the access]

N = logical file number. May be any value between O and 255

220 INPUT #N [parameters}
INPUT, GET and PRINT statements

: specify the physical unit being
accessed, and nature of
240 GET 3N [parameters) the access, via channel, or logical file
number N. N ties the statement to
. an OPEN, which describes the

input/output link, as shown above.
310 PRINT #N {parameters]

.

500 CLOSE N End of input/output link established by OPEN

Figure 6-2. Conceptual lllustration of Logical Field Number
as Used in a BASIC Program

Chapter 6: Peripheral Devices 237

The logical file number relates OPEN, CLOSE, INPUT, GET, and PRINT
statements with each other.

Once you have used a logical file number in an OPEN statement, you cannot
reuse the same logical file number to establish a different input or output channel until
the logical file is closed. If you do, CBM BASIC will give you a syntax error. But other-
wise no restrictions are placed on the way you assign logical file numbers within your
program.

Device numbers identify the physical unit being accessed by the computer. The
device number appears as a parameter in the OPEN statement. Every physical unit
which can communicate with a CBM computer has a permanently assigned device num-
ber. Upon encountering a device number in an OPEN statement, the CBM computer
activates appropriate electronic logic to establish communications with the specific
physical unit identified by the device number. Table 6-1 summarizes device number
assignments recognized by a CBM computer. 256 device numbers are available, rang-
ing between 0 and 255. However, as shown in Table 6-1, only device numbers 0 through
30 are currently in use.

Table 6-1. Device Numbers with Secondary Addresses used by CBM Computers

. Device Secondary .
Device Number Address Operation Performed
Keyboard 0 None
Cassette 1
Drive #** (Default) 0 Open for read
1 Open for write
Cassette 2 2 Open for write, but add End of Table mark {EOT) on close
Drive %2
V!deo 3 None
Display
. 0 Print data exactly as received
l’;r?e 1 Print data using previously defined format
Mm:;elr 2 Received format to be used in subsequent formatted printout
282;5 4 3 Receive lines per page specification
d 4 Enable printer diagnostic message
;’623 5 Create a special character
i 6 Set spacing between lines (Model 2022 only)
Disk 0 Load a program file to the computer
Drives 8 1 Save a program file from the computer
(all models) 2-14 Unassigned
15 Open command/status channel
Other 5.6.7
devices a;n('i Device numbers and secondary addresses are selected and
connected 3 thro assigned by the manufacturer of the device connecting
ugh

to |EEE 488 31 to the IEEE 488 Bus.
Bus

32{t0|255

unavailable

at this
time

* This is the cassette drive mounted

238 PET/CBM Personal Computer Guide

Identify this operation using
4 as a common logical unit
number

Select cassette drive 1

This secondary address opens
cassette drive 1 for a write operation,
to be terminated with an end
of tape mark on the close.

This is the name of the data file
on the cassette which is to be
accessed.

"

100 OPEN 4, 1, 2, "MAILLIST"

200 PRINT#4, NM$: REM OUTPUT NAME

210 PRINT#4, SR$: REM OUTPUT STREET ADDRESS
220 PRINT #4, CI$: REM OUTPUT CITY

230 PRINT#4, ST$: REM QUTPUT STATE

240 PRINT #4, ZP$: REM OUTPUT ZIP CODE

300 CLOSE 4: REM WRITE END OF TAPE

Figure 6-3. Use of Parameters by Input/Output Statements

In addition to having a device number, most physical units respond to a variety
of secondary addresses. Secondary addresses are best visualized as ‘‘commands’’ from
the computer telling the physical unit what operations it is to perform. Secondary
addresses are summarized in Table 6-1 for the physical units that are commonly con-
nected to a CBM computer. You should not bother studying secondary addresses at this
time: later when we describe input and output programming in detail, the function of
secondary addresses will become obvious through their frequent use.

Figure 6-3 fully illustrates the use of parameters in input/output statements.

The five PRINT3t statements occurring on lines 200 through 240 write the five
parts of a name and address to a file named MAILLIST, located on a cassette in cassette
drive 1. On encountering each PRINT# statement, the computer knows what to do,
because it checks the logical file number appearing after #. In Figure 6-3 this logical file
number is 4, therefore an OPEN statement specifying logical file number 4 describes the
nature of the operation; this OPEN statement occurs on line 100. If the computer could
not find an OPEN statement with the required logical unit number, it would not attempt
to perform the input or output operation, since it would not know what to do. In Figure
6-3 there is an OPEN statement with logical file number 4. This OPEN statement
specifies physical unit number 1, therefore cassette drive | is selected. The secondary
address is 2, therefore (on this occasion) it will be possible to write to the cassette in
drive 1, but it will not be possible to read from it. Moreover, when this operation is
closed, an end of tape mark will be written to the cassette, preventing any further data
from being added to it. The OPEN statement specifies that the data file to be accessed
has the name MAILLIST.

On line 300 there is a CLOSE statement. This CLOSE statement specifies logical
file number 4, therefore everything which the OPEN statement initiated on line 100 will
be terminated by the CLOSE statement on line 300. Furthermore, since the OPEN
statement on line 100 specified secondary address number 2, the CLOSE statement on
line 300, when executed, will cause an end of tape mark to be written to the cassette.

Chapter 6: Peripheral Devices 239

Thus, logical file number 4, occurring in statements on lines 200 through 300,
links these statements with the OPEN statement on line 100. Additional parameters
appearing in the OPEN statement on line 100 describe the operation for all of the other
statements appearing on lines 200 through 300.

Physical Unit Status

Line printers can receive output from a computer. You cannot input data to a
computer from a line printer. Yet there is nothing to stop you from executing an INPUT
statement that references the logical file number which an OPEN statement used to
initialize printer output.

Although a cassette drive can receive data from the computer, or transmit data to
it, the secondary address used in the OPEN statement which initializes the cassette drive
will specify either a cassette read or a cassette write operation. Nevertheless, you could
erroneously execute a statement which attempts to access the cassette drive in the
wrong direction.

When you execute a PRINT, GET, or INPUT statement attempting to do some-
thing which the physical unit either is incapable of handling or has not been pro-
grammed to handle, the physical unit will register an error status. A physical unit
will not attempt to perform an operation that was not allowed by the OPEN state-
ment, even if it could perform the operation. For example, if you OPEN a cassette drive
for write operations only, then an INPUT or GET statement accessing the cassetle tnit
will not execute; an error status will be generated, and that is all.

Physical units return status information following every input or output opera-
tion, whether it executes successfully or unsuccessfully. An 8-bit status is returned.
To access status, simply reference the variable ST. For example, the statement:

10 X=S8T

assigns the current status value, whatever it may be, to variable X.

Table 6-2 summarizes the way statuses are generated by all of the devices com-
monly attached to a CBM computer. You should refer to Table 6-2 later when writing
programs that access various physical units.

Do not use status to check for keyboard or display operations, even though the
keyboard and display have external device numbers.

Standard status returned by the IEEE 488 bus is shown on Table 6-2 for complete-
ness, but interfacing to this bus is not described in this book.

CASSETTE FILE HANDLING

We are now going to describe the program steps needed to handle cassette files.
We will describe how data files are created, read, and modified under program control.

Some of the file handling BASIC statements we are about to use have not yet been
introduced in this book. Remember that all CBM BASIC statements are described com-
pletely in Chapter 8. If you have difficulty following any discussion in this chapter
because you do not understand the BASIC statement being used, then you should go to
Chapter 8, read the complete description of the statement which is giving you trouble,
return to this chapter and continue.

PET/CBM Personal Computer Guide

240

juesesd jou Ajiuep| Jaxyey uo 18Ud)SIj Uo sng
80i1A8Qq 10 pu3 no swif O Bsw | 88v 333l
Juesesd jou s|gejeae sjqejieAe (stopouw ||e)
BAUP 810 8|l JO pu3 BUON 8UON BUON 8uoN JOU d0IABP 10U 3DIABP saALp
: : Bumiwsues | Buinipoay b T
yolewsiw L 10 L#
BUON Ajiosas00ul Ajuuen >o< psi1oadxa ueyy pajoadxs ueyy P 3«“%%”
pess syq $8JAQ sJow S9}AQ Jamay :
poIBIUNOOUS ejep ajow i0 pey pea pey peas
adey 8uQ 1013 300|q ejeq ¥a0[q ejeq 24k 10 |
40 pug peseyunoous wnsyo8y) 104110 peal »o0|g Buo A00|g Hoyg MO uonesedQ O uonessdo anup anjessen
8|1y J0 pu3 8)(qRIOA0DBIUN wouy peay
8Z L~ se peay 9 se pesy ZE se peay 9] se peay 8 se peay ¢ se peay Z se peay | se peay
00000001 000000L0 00000100 00001000 00010000 00100000 01000000 10000000 uonesedQ
EEITY:Ye]
smeg

1S 9|qeURA BIA S0IABQ [BUIBIXF AQ pBuIn}aYy B1Ag SMIBIS "Z-9 d|qel

Chapter 6. Peripheral Devices 241

You can program the CBM computer to write data onto a cassette, or to read
data off the cassette, but you cannot program physical cassette movement. It is impor-
tant that you understand the way cassette drives operate; otherwise, you may attempt to
perform operations which the cassette drives cannot handle.

Files are stored sequentially on cassette tape. A header precedes the first file,
and an end-of-tape mark follows the last file. Each file ends with an end-of-file
mark.

The header is written automatically at the beginning of cassette tape when you
first write to it. At this time, you may notice cassette activity which you did not expect,
but otherwise the existence of the header is of no concern to you.

The computer can find files while the tape is moving forward at PLAY speed,
but not at FAST FORWARD speed. An end-of-file mark identifies the end of one file.
The computer can also sense an end of tape mark. A status of 64 is returned by an end-
of-file mark. A status of —128 is returned by an end of tape mark.

The computer cannot rewind a tape nor can it detect anything on the cassette
while the cassette is being rewound.

You must start cassette movement manually by pressing appropriate keys on
the cassette drive when instructed to do so by the CBM computer. Do not depress any
cassette drive keys before being instructed to do so via a displayed message. Subse-
quently, the computer will automatically stop the cassette drive at the proper time, and
providing you leave appropriate keys depressed (which you should do), the computer
will automatically restart the cassette drive as needed by subsequent cassette accesses.

Let us examine the impact on cassette operations of these cassette drive
capabilities.

When writing data to a cassette drive, the cassette must be correctly positioned
when writing begins. This is the responsibility of the CBM computer operator. Previous
data on the tape under the write head will be overwritten. If the transparent tape leader
is under the write head, the tape drive will start writing nevertheless, but nothing will be
recorded. The safest policy is to start writing on a blank cassette, or a cassette that con-
tains data you no longer need, and position the cassette at the beginning of its mag-
netic surface; you can then write records and files one after another until you reach the
end of the cassette. The cassette drive will make sure that sufficient space is left between
the end of one record or file and the beginning of the next. You do not have to, and
should not, space forward on the cassette tape after writing one record or file, and before
beginning the next. You cannot back up a cassette and re-record a record or file, since
your chances of precisely rewinding the tape to the correct position are not very good.
Even a small error will cause the drive to write files which you subsequently cannot read
back.

When reading prerecorded data files, you must make sure that the tape is
rewound to a point preceding the first file that you wish to read. The CBM computer
can find any named data file while playing the tape forward, but it cannot automatically
rewind the tape to find a file occurring earlier on the tape.

Never attempt to rewrite a small portion of a file that was previously recorded
on tape; the operation is simply too risky. For example, suppose you nave ten names
and addresses stored on a tape cassette and you wish to change the fifth name and
address. In theory, you could read the first four names and addresses, which would
leave the tape positioned at the beginning of the fifth name and address. Then you could
write a new fifth name and address over the old one. In practice, this seldom works. The
cassette drives are not very precise, and there is a strong probability that you will start

242 PET/CBM Personal Computer Guide

writing the new name and address a little too soon or a little too late. Then a small piece
of the old name and address will be left in front of the new one, or after it, but in either
case you will not be able to read the new data.

To update cassette data files you must use two cassette drives. Read the old data
off the cassette on one drive, and write the new updated data to the cassette in the other
drive. You should use this procedure even if you want to change one data item among
hundreds.

CBM BASIC has no statements that simply move a cassette or position it in
any fashion.

PROGRAMMING CASSETTE DATA FILES

Three program steps are needed in order to access a cassette data file:

1. OPEN the data file.
2. INPUT from the data file, or PRINT to it.
3. CLOSE the data file.

OPEN a Cassette Data File

You must use an OPEN statement to open a data file. You will get a syntax error if
you attempt to access an unopened data file. When opening a cassette data file, you can
use any one of these OPEN statement formats:

OPEN Open logical file N. Select the first file encountered on cassette drive
1 and allow a read operation.
OPEN N,D Open logical file N. Select the first file encountered on device D and

allow a read operation. D must be 1 for cassette drive 1, or 2 for
cassette drive 2.

OPEN N.D.S Open logical file N. Select the first file encountered on device D and
allow the operation specified by secondary address S {see Table
6-1}. D must be 1 for cassette drive 1, or 2 for cassette drive 2.

OPEN N,D,S FILENAME Open logical file N. Select the file named FILENAME on device D and
allow the operation specified by secondary address S (see Table
6-1). D must be 1 for cassette drive 1, or 2 for cassette drive 2.

You can use the OPEN statement with a variety of other parameter combinations. N is
the only parameter which must be present. D, if absent, is assumed to be 1. S, if absent,
is assumed to be 0. If FILENAME is absent, the first file encountered is accessed.

When the OPEN statement is executed to open a tape cassette unit for a read,
the CBM computer will display the following message if no tape control keys are
pressed:

SRESES PLAY ON THPE #1
Ok A tape control key is depressed; tape begins moving.

Chapter 6: Peripheral Devices 243

The CBM computer then reads the tape header. In immediate mode the messages
continue as follows (bracketed items are shown only if a filename was specified by the
OPEN statement):

SEARCHING [FOR filename] Lists the first 16 characters of all files found, if any, between begin-
FOUND filename a ning tape position and requested file location

FOUND filename b

FOUND filename ¢

FOUND filename d Format for named file
FOUND Format for unnamed file
FOUND [filename] Found file

READY. File is opened for read

In program mode this block of messages is not displayed.
When the OPEN statement is executed to open a tape cassette unit for a write,
the CBM computer displays the following message if no tape control keys are pressed:

S PLAY & RECORD OM TAFE #1

(i

A tape control key is depressed; tape begins moving

The CBM computer writes the tape header; tape movement then stops. Here are
some sample OPEN statements:

OPEN 1 Open logical file 1. No physical unit is specified, so select cassette
4 1, the default physical unit. No secondary address is specified,
so select a read operation {the default secondary address is O}.
Since no filename is specified, read from the first cassette file

encountered

OPEN 1.1 Same as above, since the second parameter has the default value.

OPEN 1,1.0 Same as above, since the second and third parameters have default
values

OPEN 1,1,0,'DAT" Same as above, but the file named DAT is accessed. The second and
third parameters have default values

OPEN 3.,1,2 Open logical file 3 for cassette # 1. Write a new file and an End of
Tape mark. The new file is unnamed

OPEN 3,1,2,”PENTAGRAM"’ Same as above, but give the new file the name PENTAGRAM

CLOSE a Cassette Data File

Since file opening and closing are conceptually related, for the sake of clarity we
are going to describe how to CLOSE a file before describing file access program logic.
But remember, CLOSE must be the last statement in the file access sequence. You can-
not access a file once you have CLOSEd it.

To CLOSE a file you execute the statement:

CLOSEN

where N is the logical file number appearing as the first parameter in the OPEN state-
ment.

When you CLOSE a cassette file after reading from it, all further read accesses are
inhibited. No harm is done if you forget to CLOSE a file after reading from it, but you
are indulging in sloppy programming practices.

244 R L

You must CLOSE a file after writing to it. Recalitha: G2tz wr iz 0 m: Lovss
file is stored in a memory buffer. Whenever the buffer is fiii22. . SIToET S Ll

cassette when you close the file. If the file is not closed for any reason. tnem tns =28 2 -
partial buffer contents will not be written out, and that can cause proble™s 4 :° a-~z-
you close a file after writing to it, an end-of-file mark is written on the tape casseiiz T-=
computer needs this end-of-file mark to separate one file from the nex:. W=~ <=z
end-of-file mark, the computer would start reading the next file as though it ware pzm o7
the previous file, and that would certainly cause errors.

When you close a cassette file after opening it with secondary address 2. an end-
of-tape mark is written on the cassette. The end-of-tape mark tells the CBM computer
that there is no more data on the cassette tape. If there is no end-of-tape mark, on the
subsequent read the CBM computer would keep searching beyond recorded data files,
and any previously recorded garbage will be interpreted as valid data, and that will
generate read errors.

You do not have to execute CLOSE statements in order to close cassette data files.
The END statement closes cassette files logically but not physically. If you write to a
file, you must close it with a CLOSE statement to avoid losing data.

So why bother individually closing files that you don’t write to? There are two
reasons:

1. It makes you think through all file operations in a logical fashion, and that
reduces programming errors.

2. A maximum of two cassette files can be open at one time.

Few programs need more than ten cassette files open at one time. However, if you
do not bother to close files after accessing them, your program can finish up with a lot of
open files that are no longer being used. That can cause problems. particularly in large
programs which are written in small modules. If each module leaves a few files open,
then ten open files can quickly accumulate, in which case the eleventh OPEN statement
will cause an execution error. This is the worst kind of error to debug, since it will occur
in a program which previously might have executed without error for a long time.

It takes very little program space, or execution time to CLOSE files individually
after accessing them. And by doing so, you can avoid future execution errors.

CLOSE may be executed in either immediate or program mode. After writingto a
file, if no tape control key is depressed when a CLOSE is issued, the CBM computer dis-
plays the following message:

FRESS FLAY & FECORD OM THRFE #1-— Press cassette keys
[u]e Tape begins moving to write tape buffer

No tape control keys need to be down for a CLOSE after a READ access.
Here are some examples of CLOSE statements:

10 CLOSE 1 Close logical file 1
100 CLOSE 14 Close logical file 14
210 A=14 Same as above

220 CLOSE A Same as above

Chapter 6: Peripheral Devices 245

Accessing Cassette Data Files

Having OPENed a cassette data file you can either read from it or write to it. The
secondary address specified in the OPEN statement determines the allowed access.
Accesses can continue until the file is CLOSEd. But remember, whether you read from
a cassette data file or write to it, you must de so sequentially. The first cassette record
written or read will always be the first record of the file. If you wish to read the tenth
record of a file, you must first read records one through nine. Conversely, you cannot
write the tenth record of a file without first writing records one through nine.

You must make sure that the proper tape cassette is loaded in every drive that is to
be accessed by an executing program.

If you have just one cassette drive, the safest procedure is to mount the program
tape in this drive, load the selected program into memory, remove the program tape and
replace it with a data tape before executing the program. If you have two cassette drives,
then make sure that data tape(s) are loaded in the correct drive(s). You may or may not
have to remove the program tape after loading a program into memory, depending on
which drive(s) the program needs for data tapes.

No cassette drive keys should be depressed prior to the first cassette access. The
CBM computer will display a message telling you which keys to depress.

Remember, it is the operator’s responsibility to make sure that a cassette tape is
correctly positioned. The cassette drive will start writing immediately, wherever the tape
happens to be positioned. When reading from tape, the drive will search forward for a
data file, but it cannot find a file that has been recorded earlier on the tape.

You write data to cassette tape using the PRINT# statement:

PRINT #f,data
where:

f is the logical file number. It must match f in
the OPEN and CLOSE statements and must have a
value ranging between 1 and 255,

data is the data to be written.

PRINTSHE cannot be typed as ?4#. PRINT# must be completely spelled out.
PRINTH# transfers data to a cassette buffer in computer memory. When the
cassette buffer reaches its maximum capacity of 191 data bytes, the data is written to
tape as a ‘‘block.”” A block may contain a partial record, a single record, or several data
records.
Either numbers or strings may be written to tape using the PRINT3# statement.

Writing Numbers to Cassette Tape

When numbers are written to cassette tape, every number must be followed by a
carriage return character.

We will write a program called NUM.PRINTH to write the numbers | through 10
on cassette tape.

First, the program displays a message stating its purpose, and providing load
instructions:

NUM. PRINT #
18 PRIMT"Dee CREATE HUMERIC DATA TAPE ee" PRINT

2@ FRIMT"ee MOUNT TAFE: PRESS <RETURM> WHEM READY ee" FRINT
36 GET AF:IF A$="" THEMW Zz@

246 PET/CBM Personal Computer Guide

Line 20 instructs the user to insert a cassette tape in the cassette unit, rewind to the
beginning of the tape, and press RETURN when ready. Statements on line 30 wait for
any key to be pressed. If no keystroke is entered, the computer waits. This wait loop
gives the user time to mount and rewind the cassette tape.

The wait loop created on line 30 is undesirable since it can be terminated by press-
ing any key. The operator’s elbow brushing a key can end the wait loop, despite the
instruction to press the RETURN key, which would lead an operator to the logical con-
clusion that no other key will do. A better wait loop is created by:

Z GET A% IF AFCHCHESOIZY THEM 2R

Once the RETURN key is pressed, the program drops down to the next line where
an OPEN statement opens a cassette data file:

3@ FRIMT"ee OFEMING LRTA FILE ee":0OPEH1.1.2."NUMBERS"

This OPEN statement opens logical file 31, selects physical unit #1 (the cassette tape
unit} with secondary address 2 (OPEN for write and EOT mark at close of file). The data
file is named NUMBERS.
Next, we set upa FOR-NEXT loop to display the numbers I through 20 on the

screen, and to write these numbers on cassette tape:

S@ FOR H=1 TO 1@

& FRINT H-<+—————Display N on screen

T PRIMT#1.H-=-————Write N to data file 3 1 INUMBERS)

6 MEXT H
PRINT N creates a screen display. PRINT#1,N writes to tape. Remember., PRINT#
cannot be typed in as ?4. PRINT must be spelled out completely, with the number sign,
file number, comma, and variable following respectively.

Incorrect Correct
TH1.H FRIMT#1.H
FRIMT H

FRIMT #1.H
FRIMT#1H
FRIMT1.H
Any of the above incorrect entries will result in a syntax error, except PRINT N,
which will display N on the screen.
If everything works correctly, lines 50 through 80 display numbers on the screen
and write them to tape:

PET Screen Representation of Data Tape

L RO RS B+ SO B R SR (R

17 B - e e

Chapter 6. Peripheral Devices 247

The PRINTZt statement writes a carriage return character on cassette tape
wherever a PRINT statement would display a carriage return. Thus the PRINTH state-
ment on line 70 writes a carriage return after outputting N, just as the PRINT statement
on line 60 causes a carriage return after displaying N. To ensure that you write numbers
correctly to cassette, use PRINT3 statement parameter syntax which, with PRINT
statement (s), would display a single, vertical column of numbers.

After all data is written to the tape, the file is closed. You must CLOSE the file to
be certain that all data is written to cassette tape.

3@ PRINT"ee CLOSING DATA FILE ee":(CLOSEL
1aa EMD

Be sure that the same logical file number is used in the OPEN and CLOSE statements.

OPEN 1,1,2,"NUMBERS"

CLOSE 1
Here is the complete listing for NUM.PRINT#:

18 FPRINT“ e CRERTE NUMERIC DATA TAFE ee" FPRIMT
26 PRINT"ee MOUNT TAPE, FRESS <RETURN> WHEM RERDY ee" FRIMT
@ GET A% IF AF="" THEH Zo
46 FRIMT"ee OPEMIMG DATA FILE ee" OFEML, 1.2, "MUMBERS"
S@ FOR H=1 TO 1@
58 PRINT H
FRIMNT#1.H
NE=T H
: FRIMT"ee CLOSING DATA FILE ee":({LOSEL
1@ END

ptal
26
14

Here is a run of the program:

oe¢ CREATE HUMERIC DATA TAFE ee
*e MOUHT TAFE: FRESS3 (RETURN WHEN RERIYee
ee OFPEHIHNG DATH FILE ee

FRESS FLAY & RECORD OM THFE #1
Ok

@ =0 T e e B o

a
C

eoCLOSING DRTA FILE ee

248 PET/CBM Personal Computer Guide

Writing Strings to Cassette Tape

Unlike numbers, when you write string variables to cassette tape, you can sepa-
rate variables using a comma or a carriage return. But the effect of these two separa-
tors differs. When string variables are subsequently read off the cassette tape, each
INPUT4# statement will read all string variables up to the next carriage return separator.
Therefore you can use commas only to separate string variables that will always be read
back as a group, via a single INPUT3 statement. You must use a carriage return follow-
ing the last string variable to appear in an INPUT=# statement.

Special programming techniques are required in order to separate string varia-
bles using commas. Moreover, the mixed use of commas and carriage returns as sepa-
rators can become a source of great confusion, even to experienced BASIC program-
mers. Therefore make sure that you study examples carefully before attempting to write
programs for yourself.

We will modify NUM.PRINT# to write the words ‘“ONE” through “TEN" as
strings. The new program is called WORD.PRINT#. The words can be supplied using
cither INPUT or READ/DATA statements. Our sample program uses READ/DATA
statements. The READ statement is inserted in the FOR-NEXT loop at line 60. A
DATA statement is added to the end of the program. The final program is listed below,
followed by a sample run of the program.

WORD. PRINT #

16 FRINT"JeeCREATE WORII DATA FILEee" :PRINT

=8 PRIMNT"eeMUUNT DIRTA TARPE: PRESS <RETURND> WHEN READYee"
e GET As$:IF As="" THEN 3@

48 FRINT"eeOPENING DHATR FILEee" :OPEN1. 1,2, "NUMWORD" : FRINT
5@ FOR H=1 TO 1@

£8 READ N$

7O FRIMT M

20 FRINTH#1, NS

F@ HEXT N

1080 FRINT"eeCLOSING DATA FILEee" :CLOSEL

11@ DATA ONE, TWO. THREE., FOUR, FIYE. SI1X, SEVEMN.EIGHT,NINE. TEM
128 END

*eCREATE WORD DATA FILEes
¢oMOUNT TAFE: PRESS <RETURN> WHEM REARDYee
S¢¢UOPENING DATA FILEee

FRESS PLAY & RECORD OM TAPE #1

K

OME
T
THREE
FCOLUR
FIVE
SIX
SEVEN
EIGHT
HINE
TEN
¢oL OSING DATA FlLEee

s e

Chapter 6: Peripheral Devices 249

As each string variable is written to cassette tape, this program terminates the
string variable with a carriage return.

Let us now look at the use of commas to separate string variables that are writ-
ten to cassette tape. Commas must be inserted; they are not taken from the PRINT
statement parameter list. For example, when the statement:

18 PRINT#1.FE.MT.LE

is executed, contents of the three string variables F$, M$ and LS will be concatenated
into a single string variable which will be written to cassetie tape as follows:

§ [, [ms | us | j

A comma can be inserted between fields using one of these two methods:

1. Enclose the separator within quotes:
FOTHTHY L FE ", " M " " LE

2. Use the CHR$() function:
SRINTHLL P35, CHEF (481 Mg, CHRF 440, L8

ltem ltem
Separator Separator

CHRS$(44) is the CHRS function representation of the comma character.
Here is the illustration of F$, M$ and L$ written to cassette tape with commas
separating F$-M$ and MS-LS:

The program below, called NAMES.PRINTH#, forces separators to keep F$, MS$,
L$ name strings (first, middle, last) from running together:

NAMES. PRINT #

16 PRIMT"DeeCREARTE HAME IRTA FILEee" -PRINT

28 PRINT"eeMOUMNT DRTA TAFE. FRESS {RETURM> WHEM REALYee"
2@ GET A% IF A¥="" THEH Z0

4@ PRIMT"eeC0PENING DATA FILEee" :OFEM1.1.2. "NAME" ‘FPRINT
Sg FOR J=1 TO 4

@ INFUT F&. MELSE

7@ PRIMT F&.ME.LS

20 FRIMT#1.F$:CHREC440 MECHRES 445 L §
2@ HERT J

16060 PRINT"eelLOSING DATA FILEee" :CLOSEL
1i@e EMD

The rule to follow when writing to cassette tape is that characters written to
cassette tape will be the same characters that a PRINT statement would display on
the screen. A carriage return is written to cassette tape where it would force a carriage
return on the display. To create a comma separating two cassette variables, you will
require the same PRINT# statement parameter list needed to display a comma between
two string fields on the screen.

The next sample program shows how mailing list data is written to tape. A new
program MAIL.PRINT3# writes a mailing list named MAIL onto a cassette tape. MAIL
is read by another program called MAIL.INPUT=.

250

PET/CBM Personal Computer Guide

In this sample program we want to demonstrate program steps needed to write
cassette records. We do not want to demonstrate good data entry program design. The
mailing list data entry program described in Chapter 5 illustrated good data entry pro-
gram design. The mailing list program we are now about to describe has very simple
(and inadequate) data entry logic, but it is short and easy to follow, allowing the discus-
sion to focus on cassette handling.

Each name and address is written to cassette tape as one record with these five
fields: 1) record number 2) name 3) street address 4) city 5) state and ZIP code. This
may be illustrated as follows:

¢¢ RECORD #E& ee Field 1

WIDGETS SUFPLY CO. Field 2

555 BOGUS AVE. Field 3 (One record
GERTIE Field 4
TEMMESSEE 38901 Field 5

Of course, this is not how the data will appear on cassette tape. The data on the
tape may be illustrated conceptually as follows:

§ <CR>RECORD #6 <CR> WIDGETS SUPPLY CO. <CR>

| — —— N " - /

Field 1 Field 2

555 BOGUS AVE. <CR> GERTIE <CR> TENNESSEE 38901 <CF|>£
N e’ N —
Field 3 Field 4 Field 5

L
I

'|
One record !

Below is a program listing of MAIL.PRINT#. Type MAIL.PRINT# into your
computer and save it on a cassette tape. Then list the program. (This listing assumes the
standard keyboard characters.)

: C.I‘JTH 186
A PRIMT#1.1
PRINT#1.M4M$

LIRNZ WHEN READY s

MUCOPEN 1.1 MAIL"

#4 AILING LIST ZnTRY ITEM".I." o
U
¢IF HO MORE E CHRECI4D ; "END" S CHREC3S) ")
HTV RIS TNPUT "1
NME=VENIYM THEM CLOSE 1 FRINT "I A4 END OF PROGRAM #4" EuD
: ADDR LIME 1":Al$
- ADDR _IME Z'-:q
4> FDIR LINE
Tele] CH=SAYE D" K
THEN 2

1 AND K{=4 T

243 PRINT#1.A1F

g

Chapter 6: Peripheral Devices 251

[5]

S8 PRINT#1.A:
3 PRINT#1.A3
278 GOTO Sa

FRINT "o OM ¥ GOTO 238, 2008, 210, 229
B INFUT "1) MAME "aNMER :
PRINT:INPUT "2» ADDR LINE 1":A1$F RETURN
318 PRINT"AW": INPUT "33 ADDR LINE 2")A2% RETURN
20 PRIMT"MNM": INPUT "4» RDOR LIME 3" A3$:RETURN

5
3

[

The first five lines (10 to 50) display a brief description of the program function.
The next segment instructs the user to mount the data tape (lines 60 and 70).
The statement on line 80 OPENs the data file:

2@ PRINT"@## OFPENING MAIL FILE ##":0PEW 1.1,2."MAIL"

MAIL is opened as logical file #1 on the cassette unit, with an EOT (End of Tape)
mark to be written at the CLOSE of the file. The message ““OPENING MAIL FILE” is
displayed on the screen prior to the actual OPEN command. The operator is given this
message since it takes a few seconds to open the file.

Now the tape is ready to accept data. Before data is written to the tape it should be
displayed on the screen so the data may be checked for mistakes.

Statements on lines 130 through 170 input data from the keyboard and display the
data on the screen.

Variable “‘I"” on line 90 is the incrementing record counter; it is displayed at line
100. Statements on lines 130 to 170 accept variables NM$ (name) and A1$, A2$, and
A3$ (addresses) as separate fields. The end of each field is signaled by a carriage return.
After all four fields have been entered, the statement on line 180 instructs the operator
to either change a field or save the record. If a field is incorrect, the operator types the
field number (1-4) and the program jumps to a field correction routine at line 280.

Using the field number input (variable X), the cursor is placed at the specified
field, allowing the operator to change the selected field. The program returns to line 180
so the operator can specify another field change. When all the fields are correct, the
operator inputs 0 and the program continues at lines 220 through 270. Statements on
these lines write the record to the cassette data file as follows:

3 6 <CR> WIDGET SUPPLY CO. <CR> 555 BOGUS AVE. <CR> GERTIE g

Be sure the logical file number referenced by the PRINTHk statement is the same one
specified in the OPEN statement.

After the record is saved, the program returns to line 90 to prepare for input of
another record. The operator types ‘““END"” for NM$ when there are no more records to
enter. The statements on line 140 close the data file and write an EOT mark (specified in
the OPEN command) when NM$="END".

Notice that the tape does not move after each record is saved. As described ear-
lier, the CBM computer stores all cassette data in a buffer. When the buffer is full, the
entire buffer contents is written as a block to the tape. A block may contain a partial
record, a single record, or several records. The CBM computer leaves interblock gaps
between each block of data as follows:

g | Block l Gap] Block l Gap l _?_

252 PET/CBM Personal Computer Guide

Here is a sample program run:

EREAE IN &
READY

Reading Data from Cassette Tape
These are the three program steps needed to read data from cassette tape:

1. OPEN the data file
2. Read the data file
3. CLOSE the data file

A data file must be opened for a read with the file name it was assigned when
written. A different logical file number may be assigned. The secondary address code
must be 0 for the READ option.

Write Program Read Program
OPEN 1,1,2,"DATA” OPEN 1,1,0,DATA"
f f physical device no T
file name

Two statements read data from cassette tape: INPUT# and GET#. To read
numeric and string fields from a data file use the INPUT4t statement. The GET3 state-
ment reads one character at a time.

CLOSE the file after data has been read. CLOSE the same logical file that you
OPENed.

OPEN 1,1,0,"DATA”

CLOSE 1

A good way to CLOSE a file that is being read is to test for an end-of-file (EOF)
via the status word (ST). When a data file is written, an EOF mark is written at the end
of the file. When an EOF mark is read, the file status equals 64 and the file may be
closed. You may test for an EOF mark and close the file using this one statement:

IF Z7=84 THEM CLOSE

When ST equals 64, the file is CLOSEd.

Previously we wrote the program NUM.PRINT3# to write the numbers 1 through
10 in a cassette data file named NUMBERS. Now we will write a program called
NUM.INPUT3 to read the ten numbers from the NUMBERS data file, and display
them on the screen.

The INPUT3 statement is used to read numbers and strings from cassette tape.
INPUT3# reads one field at a time.

Chapter 6: Peripheral Devices 253

The first few statements of NUM.INPUT4k instruct the user to load the data tape.
These statements are identical to the first three statements of NUM.PRINT=t. At line 30
there is a wait loop which gives the operator time to mount the data tape. After mount-
ing the tape, key RETURN; the program continues at the next line.

18 PRINT"Jee READ NUMERIC DRTH TAPE ee" FRIMT

28 FRINT"ee MOUNT TAFE ; PRESS <RETURH> WHEM RERDY ee" FRIHT

@ GET A$:IF A$="" THEM 3@
Before any data can be read, the data file must be opened. Statements on line 40 open
file #1, physical device #1, with secondary address 0 (OPEN for read) and filename
NUMBERS.

48 PRINT“ee OFEMIMG DATA FILE ee" OFEH 1.1.8."HUMEERS" (FRINT

Next, a FOR-NEXT loop reads the first ten data items from the tape and displays
them on the screen:

SE FOR I=1 TO 1@

8 INPUT#1 ., H~——Read N from tape
78 FRIMT M Print N on screen
o6 MEXT I

The INPUT#1 statement on line 60 reads one number per execution. The FOR-
NEXT loop ensures the correct number of executions. Program execution may be
illustrated as follows:

Program Tape Screen
ANVMAA .
FORN=1TO 10 READ 1 |-EBINTN of v ccR>
INPUT#H,N/) <CR>
PRINT N NS 2 2 <CR>
NEXT N <CR>
3 3 <CR>
<CR>
4 4 <CR>
<CR>
5 5 <CR>
<CR>
6 6 <CR>
<CR>
7 7 <CR>
<CR>
8 8 <CR>
<CR>
9 9 <CR>
<CR>
1 10 <CR>
0
<CR>
EOF
/\NV"V

After the data is read, the file must be closed.

3@ FRIMT"ee CLOSING DATA FILE ee":CLOSEL
1@8 END

254 PET/CBM Personal Computer Guide

A complete listing of NUM.INPUT# is given below, followed by a sample run of
the program.

NUM.INPUT #

16 PRIMT"Dee READ MUMERIC DATH FILE e+ FRIMT

2@ FRIMT"ee MOUMT TAPE.FRESS <RETURMZ: WHEM READY" FRIMT

=@ GEYT AFIF A$="" THEM Z&

@ FRIMNT"ee OFEHIMG IRTA FILE " OFEM 1.1.8, "HUMEBERZ" FRINT
Far I=1 TO 1

IHNFUT#1.H

@ FRIMT M

O OMERT 1

20 FRIMT"ee CLOSIMG DATA FILE ee": CLOZEL

@ EMD

¢¢ REARD HUMERIC DRATA TRFE ee
oo MOUMT TAFE. PRESS <RETURMI WHEN RERDY ee
¢e UFENIHNG IIRTA FILE ee

FRESS FLAY OM TAFE #1

@ — 100) O B
50

e¢ CLOSING DATA FILE ee

The INPUT3 statement also reads fields that contain string variables. The pro-
gram WORD.PRINT= wrote ten string variables to cassette tape. The data file created
was named NUMWORD. NUMWORD looks like this:

§ <CR>ONE<CR>TWO<CR> +-+r++ <CR>NINE<CR>TEN<CR> <

To read fields from NUMWORD, use INPUT3 with a string variable parameter.
With only slight modification, you can change the READ NUMERIC DATA TAPE
program to read NUMWORD. The changes occur at line 40 (name the data file), and
line 60 (INPUT variable). The complete changed listing appears below, followed by a
sample run of the program.

18 FRIMT"Dee READ HUMWORD DATA FILE ee" FRIMT

2B FRIMNT"ee MOUNT TAFE.FRE: CRETURM: WHEM READY'™ FRINT

20 GET A% IF Af="" THEM 3

45 PRIMT"ee CFEMING DATA FILE ee" OFEH 1.1.8. "HUMWORD" FRINT
S8 FOR I=1 TO 14

&8 IHFLIT#1.M$

%)

FRINT HE

HEXT 1

FRIMT" "ee CLOSIMG DATA FILE ee" CLOZEL
0 EMI

26
16

Chapter 6: Peripheral Devices 255

¢¢ READ MHUMWORD DRTA FILE ee
*¢ MOUMT TAFE. FRESS <RETURMI WHEM READY
ee (QOFENIMG IATR FILE ee

FREZS FLAY OH TAFE #i
Cik:

OHE
THO
THREE
FOUR
FIWVE
SEVEM
EIGHT

HIMNE
TEM

¢*¢ CLOSIHNG DATA FILE e

Returning to the NAMES.PRINT# program, recall that the names in data file
NAME are written as three separate string fields: F$, M$, L$. Each string field has a
comma separating it from the next string field. The data tape looks like this:

g HEADLY, GEORGE, JOYCE<CR>CAROL, A., SMITH<CR> E

If commas do not separate the fields, they will be read as a single string variable, and the
three fields will be displayed on the screen as follows:

AERDL Y GEQRGE JTOYCE
THRROLAL ZMITH

A program to read data from the NAME file is listed below. The INPUT3# state-
ment on line 60 will read all fields up to the next carriage return separator. Fields lying
between carriage returns are separated by commas. Since three fields lie between car-
riage returns, separated by commas, three string variable names appear in the INPUT#
statement parameter list. The PRINT statement on line 70 displays the three string
variables on a single line, with a space inserted between adjacent strings.

1@ FRINT"Dee FEAD MHAME DATA FILE ee" FRINT
0 FRIMT"ee MOUNHT TAFE:FRESS <RETURM: WHEM RERDY" FRINT

; GET FA%:IF AF="" THEH :

48 FRIMT"ee OFEHING DATA FILE ee" OFEM 1.1.8, "HAME" FRINT
“@ FOR JI=1 TO 4

IMFUTH#1.F$.ME. L

I FRIMT F&:" ".mg." ".L$

1 HEST T

W FRIMT "ee CLOSIHG DATA FILE ee" CLOSEY

EHTi

¢e READ HAME DLATA FILE ee
®e MOUNT TAFE. FRESZ RETURH: WHEH FEADY ee
¢¢ OFPENING DATA FILE ee

FRESS PLAY OH TAFE #1
QK

256 PET/CBM Personal Computer Guide

ARHOLTY J. SIMFSOM
BETTY <. CLARK
HERDLY GEORGE JOYCE
CARCL AMHE SMITH

ee CLOSING DRTH FILE #e

The next program demonstrates how to read mailing list data which was written to
data file MAIL by program MAIL.PRINT#. Each record contains five fields: record
number, customer name, street, city, state and ZIP code. Below is an example of a
MAIL file record:

e RECORD H#6 oo Field 1

WIDGETS SUFFLY CO. Field21

s55 EOGUS AVE. Field 3 (One record
GERTIE Field 4
TENMESSEE 38901 Field 5

Below is a program listing of MAIL.INPUT#. Type in MAIL.INPUTH and save it
on a cassette tape. Then LIST the program to follow the step-by-step discussion.

MAIL. INPUT #

PRIHT"n&QQQQQQQQQQ@QQQQQQQ@Q@QQQQQQ“

FRIMT 4 "

FRIMT"#® FEAD MAIL FILE W IHFUTH #"

FRIMT"® a
PHIMT“m*amemaaemeeaame*aaeee&eaaoe" FRIMT (FRINT
FRIMT e84 FREZS <RETURMI WMHEH TAFE 15 LOALED #ea”
GET A% IF AE="" THEH 7&

PRIHT &4 OFEMING MRIL FILE et OFEMLL 1.8 ALY
FRIHT " ote FEADIHG MAIL FILE ##"

IF =T7=54 THEH 2333

IHFLITH#1. 1¥

IHFLIT#1 . MHME

IMFIIT#1 . ALF

THFLTHL .
IHFUT#1 . AZE

FEIMT "4 RECORD #":1%:" Ll
PRIHT”ﬁuuuuﬂﬂmE»“;TRE(?J;HMi
FRIMTADDRE " TRECSDALE
FRINTTARE
PRIMTTAECR .
FRIMT " aIneIn"
IHFUT EHMTER “v° TO RERD MEXT RECORD:A$:IF AF="7"" GOTO tEs
PRIMT"ee EHD OF MAIL FI1LE~~FROGREMAM TERHIHHTED“?ELLSEiZEHD

P
o}

[]
PR A

ot

v =4 I
oD S
VT

A

N gt T e

P
i T

[l

=

Statements on the first five lines display a brief program description. Statements
on lines 60 and 70 instruct the user to mount the data tape; the program is then ready to
begin reading customer addresses. First the data file must be OPENed. MAIL is
OPENed as logical file #1 on the cassette unit #1. The secondary address must be 0 for
READ.

oH FRIMT 44 OFEMING MAIL FILE ##" OPEHRL. 1.8, "MARILY

er Guide

1tten to
record
le of a

i save it

m

ements
ready to
[AIL is
be 0 for

Chapter 6: Peripheral Devices 257

The statement on line 100 uses the status word (ST) to check for an end-of-file
mark. If ST=64 (indicating an end-of-file mark is found), then the file is closed at line
9999. ST should be checked before data is read so that you do not attempt to read data
when there is no more.

Statements on lines 110 to 150 read data using INPUT=. Each field was written to
tape separated by a carriage return, so each field is read with an individual INPUT#. The
variable or string names used to read data may differ from names used when the data
was written. For instance, data may be written to the tape as X$ and read back from the
tape as A$. The computer will not know the difference because data variable names are
neither saved nor passed from one program to another.

}r' <CR> WIDGETS SUPPLY CO < CH> 555 BOLUS AVE <CH> GLEHTIE <CH> TENNESSEE *!:!:::'i

?))

Read Read Read Read
INPUT #1,
INPUT 31, NM$
INPUT #1, A1%
INPUT #1, A2S
INPUT #1, A3$

Data is stored in the input buffer (memory) when read. Nothing is displayed on
the screen unless the display is programmed. This is done by statements on lines 160
to 200, where tabs and leaders were inserted. Line 210 moves the cursor down four
lines.

1 PRIMT"D8¢ RECORD #".I%," 4"
FRIMT " SIelelelaNAME "0 THEC 30 0 HME
FRIMT"ADDE ".TAREC(Z»ALE

138 FPRINTTRECZ . AZE

268 FPRIMTTRECS Y AZE

216 FRINT" alene"

-
w =) Ty
oo

The screen output looks like this:

¢+ RECORD H& +e

HAME * WIDGETS SUPFLY CO.
ADLDR : S55 BOGUS AVE.
GERTIE

TEMMESSEE 35281

After all four fields have been displayed, the operator is asked whether the next
record is desired:

Z2@ INFUT"ENTER -%° TO READ MEXT RECORD":AF: IF AF="4%" GOTO 1@

If the user wants the next record, the program goes to line 100 and repeats program
execution until the status word (ST) signals an EOF. If the user does not wish to con-
tinue, or if an EOF is encountered, the file is closed and the program ends.

Figure 6-4 provides a flowchart of the MAIL.INPUTH# program. A sample run of
the program follows:

258

PET/CBM Personal Computer Guide

Mount
data tape

Y

OPEN
Data file

Qj'

Read fields
w/INPUT #

'

Print data
on screen

Next
Record
?
No

CLOSE
data file

Figure 6-4. MAIL. INPUT 3

:QQQQ‘!'QQQQQQQQQQ@QQQQQQQQ‘!‘Q:

& READ MAIL FILE W/ INFUTH #
:Q‘!QQQQ?Q‘!‘!‘Q!‘!‘@QQ@QQQQQQQQQ:

a4 FREST <RETURM: WHEM TAFE 13 LOADEL ##
4% COFEMIMG MAIL FILE #%

FRESS FLAY OM TAFE #1
] 4

Chapter 6: Peripheral Devices 259

*2 READING MAIL FILE

2% RECORD # 1 o

HAME : ACHME MAMUFACTURING CO.
RIDR: =33 MAIN ST,
DOWMT CN

IL €2S81

EMTER “%~ TO READ MEMT RECORD

24 RECORD # & ##

HAME : EEMJAMIN FRAMKLIM
ADOR : 12 LIBERTY TOWER
FHILADELFHIA
FA 1852«

EMTER 7%~ TO READ NEXT RECORD

a4 RECORD # 3 a4

HAME : MEIL ARMSTROMG

ADIDR 537 SEA OF TRAMOUILITY AVYE.

EARTHYIEW
LUMNAR aacoas

EMTER %Y TU REARD MEXT RECORD

e RECORD # 4 4%

HAME : MAMMOTH DISTRIBUTION CO.
HDIR THDUSTRIAL FARK

CITY OF IMDUSTRY

CA 232425

EMTER %~ TO READ MEXT RECORD

¢ RECORD # S a2

MHAME : HENRY MUSCATEL
RIDR 1% oAk =T.
MAFA

EMTER “¥° TO REARD MEXT RECCORD

% RECORD # € #9

HHME WIDGET SUPPLY CO.
ADILDE oS5 FOGUS
GERTIE

TEMHESSEE 3E3601

EMTER %Y TO READ HEXT RECORD
*4 END OF MAIL FILE--FROGRAM TERMIMATELD &4

260 PET/CBM Personal Computer Guide

When you run MAIL.INPUTH#, do not panic if the computer appears to stop for a
few seconds. Look at the cassette drive and you will see the cassette tape moving. What
is happening is that the computer is reading the next 191 bytes of data into the input
buffer before continuing with the program. Once the buffer is full the computer will
come to life again.

Note that statements on line 220 do not represent good programming practice.
This program logic will cause another name and address to be read and displayed if the
operator depresses the Y key. But if the operator depresses any other key, or acciden-
tally bumps the keyboard, the program will shut down. A well-written program will res-
pond to just two keys, perhaps “y™ for “'yes’” and “*N"’ for “no’’. The prompt message
will tell the operator to depress one of these two keys. Any other key input should be
ignored. Can you rewrite the statements on line 220 to operate in this fashion?

Another method of reading data files uses the GET3# statement:

GET #f,var
where
f is the logical file number (1-255, matching the file
number in the OPEN and CLOSE statements).
var s the variable name of the data to be read.

GET4 reads one character at a time from the data file. It is similar to GET, which
accepts one character at a time from the keyboard.

GET2t reads characters, file delimiters and anything else on the tape. This is
especially useful when you want to read everything that is written on a bad data tape to
find the cause of any problem. GET# allows individual characters to be compared with
specific values as a means of character identification.

Two sample programs will demonstrate how to read and display an entire file,
including all file delimiters, and how to display the MAIL data file separated into
records.

The following program, MAIL.GET#1, reads data file MAIL one character at a
time and displays the contents of MAIL on the screen:

MAIL.GET #1
1@ F’RINT"T)!QQ'!'Q'!'QQQQQQQQQQQQQQ!!QQQQQQ"
ze PRINT"® L A
2@ PRINT"# READ MRIL FILE Ws GET# #"
4@ PRINT"# "

Sa PRINT”QQQQQQQQQ@QQQQQQQQQQQQQQQQQQ“?FRINTiPRIHT

50 PRIMNT"## FRESS <RETURM: WHEW TAPE IS LORDED #%"

~a GET A$: IF As="" THEN 78

80 PRIMT"WWe COPENING MAIL FILE QQ"'FRINT¢UPEH1,1,G,"NHIL"

@ PRINT ¥Ae MAIL FILE #47

198 IF ST=€4 THEN 9383

110 GETH#1.X$

120 IF X$=CHR$¢13> THEH HE="N

130 PRINT X$:

14@ GOTO 108

2999 FRINT"sD00pa END OF MAIL FILE~—FROGRAM TERMIMATEL4®"
CLOSEL :EMI

Chapter 6: Peripheral Devices 261

Statements on lines 10 through 90 are similar to the beginning lines of
MAIL.INPUT#. These statements introduce the program, give instructions for mount-
ing the data tape, and then open the data file.

Statements on lines 100 through 140 read data from file MAIL and display data on
the screen.

The statement on line 100 checks for an end-of-file (EOF) status. If an EOF is not
encountered, the next character is read by the GET4# statement on line 110. #1 is the
file number and X8 is the variable name assigned to the data strings. This statement will
read the next character in the file.

The statement on line 120 compares the current value of X$ to a carriage return
{CHRS$(13)). If the value of X$ is CHR$(13), then the value of X$ is changed to a
FULL GRID 8. This change avoids printing a carriage return, which would push the
cursor to the next line; with the FULL GRID substituting for a carriage return, the
whole file appears as one continuous line, as a good conceptual representation of the
data tape. An example of this is shown in the sample run.

Make sure that a semicolon follows the variable in the PRINT statement on line
130, otherwise characters will be displayed vertically down the first column of the
screen.

After each character is read from tape and displayed on the screen, the program
returns to check status and GET# another character. This process repeats until ST=64
the end-of-file). When the end-of-file is encountered at line 100, the job of
MAIL.GET=#1 is complete. At line 9999 the program closes the data file and ends.

Here is a sample run of MAIL.GET#1, using MAIL as the data file.

XXX S LI LI LI L L L L L L L L Ll bk
” »

* RERD MAIL FILE W~ CGET# #
* *
LY I TIEI I LEILLL L LLLLL L L Ll L Lkl

a4 FRESS <RETURH> WHEN TAFE I% LORDED 44
a4 OPENING MAIL FILE o

FRESS FLAY ON TAFE #1
[l 4

e MAIL FILE #¢

1 @ACHME MANUFACTURIMG CO.¥1235 MAIW ST.
HOOWNT ML €z2Se1® 2 SBEMIAMIN FRAMEL
IN&1Z LIBERTY TOWERBFHILADELFHIA 16524
% 2 ENEIL ARMSTROMNGHESSY SEA OF TRANGUILI
TYHREARRTHY IEWSLUNAFR aoaoeE 4 MWIAMMOTH D
ISTRIBUTION CO.¥INDUSTRIRL FARKSCITY OF
INDIUSTRYSCR 24255 S RHEHRY MUSCATEL®E
12 0RK =T.#NAFARCA ISEZAEE 6 WIIDGET =U
FFLY CO.ES55 BOGUS AVE. $GERTIESTEMHESSEE

38901 %

a8 END COF MAIL FILE--FROGRAM TERMIMATEIL®#

262 PET/CBM Personal Computer Guide

Next program MAIL.GET#2 reads MAIL and displays data on the screen,
divided into records. Here is a program listing of MAIL.GET3#2:

19 ERINT' AR AR AAARASARRARAAARRAARAAY
20 PRINT"# [&g
2 PRINT"# READ MAIL FILE W/ GET# #"
48 PRINT"# s’

] PRINT“:::..:::.::...::AA:::.::::“'QQIHT PRINT

65 PRINT"s# FRESS <RETURNZ WHEH TAFE I3 LOARDED #4" PRINT:

76 GET A$:IF A$="" THEH 7a

af PRINT"#4 OPEMIMG MAIL EILE #a" FRINT :OFEHN 1.1.8"MAIL"

25 PRINT:FRIMT"Of4 MAIL FILE aat PRINT

25 F=@:R=0

108 IF ST=64 THEM 3953

118 GETH1,xF

120 IF #E=CHR$(13) THEM F=F+1

136 PRINT x#:

14@ IF F»=5 THEMN GOSUE 168

158 GOTO 196

168 PRINT

178 R=R+1

128 IF R22 THEM PRINT "PRESS sype SOR MEXT SET OF RECORDS. INPUT A%
185 IF AF="Y" THEHN R=@

{12@ E=@:PRINT RETUEHM

2999 PRIMT"Mameé4 EMD OF MAIL SILE--FROGRAM TERMIMATEDAA" CLOSEL END

Type in MAIL.GET#2. SAVE and VERIFY the program on a cassette tape. Then
LIST it.

Statements on the first ten lines (10 through 100) of MAIL.GET#2 are identical
to MAIL.GET=1. This part of the program informs the user of the program’s functions
and procedures, and opens the MAIL data file in preparation for reading the data.

The difference between MAIL.GET#2 and MAIL.GET31 is at line 120. If
X$=CHR$(13), instead of changing the value of X$ from a carriage return to FULL
GRID B . variable F (a carriage return counter) is incremented by +1. When
MAIL.PRINT# wrote to the data file, a carriage return marked the end of each field.
There are five fields in each record. MAIL.GET#2 counts fields. The conditional state-
ment on line 140 calls a subroutine if five records have been read.

The statement on line 160 inserts a blank line between records. On line 170, varia-
ble R serves as a record counter. Statements on line 180 test to see if more than two
name and address records have been read. When three records have been read, the
screen is full, and the operator is asked if a new set of records is desired. If yes, the
record counter R and field counter F are initialized to zero before returning to read the
next set of records at line 100. This continues until the user inputs something other than
a Y character or ST=64; at that time the file is closed and the program ends. Figure 6-5
illustrates program logic.

Although GET# is similar to INPUT3# in some ways, it is more difficult to format
the printout when using GET4tif titles and indentation or spacing are desired. Just as X$
is compared with CHR$(13), so other field delimiters or characters would have to be
conditionally tested in order to create a formatted display.

Following is a sample run of MAIL.GET#2 reading MAIL.

Chapter 6: Peripheral Devices 263

Ll LIl LIL L LI LI LI LI LI)
L] *

® READ MAIL FILE W/ GET# #

L] L

20 P22A AR RRRARDARDARR A DDA

% PRESS <{RETURN> WHEN TAPE IS LORDED #%
2% OPEMING MAIL FILE #%

FRESS PLAY ON TAPE #1

oK

4 MAIL FILE #¢
1

ACME MANUFACTURING CO.
1235 MAIN ST.

DOWNTOWN
IL 62561
2

BENJAMIN FRANKLIN
12 LIBERTY TOMWER
PHILADELFHIA

FA 16524

3
NEIL ARMSTRONG
S97 SEA OF TRAMGUILITY
EARTHVYIEW
LUMNAR aoeee

FRESS “Y“ FOR MEXT SET OF RECORDS?Y
4

MAMMOTH DISTRIBUTION CO.

INDUSTRIAL FARK

CITY OF INDUSTRY

CH 924925

S
HENRY MUSCATEL
219 0ORK ST.
HAFA
CA 95263

&

WIDGET SUFFLY CO.
555 BOGUS AVE.
GERTIE

TEMNESSEE 38901

FRESS “Y“ FOR NEXT SET OF RECORDS?Y

@4 END OF MAIL FILE--FROGRAM TERMINATED#%

264 PET/CBM Personal Computer Guide

(lines 10-90)

Yes

(line 100)
No \
GET* Close
1 character data
from data tape file
(line 110} (line 9999)

Increment
CR counter F:
F=F+1

——-+ lline 120)

Print character
on screen

Request input
for next set
of records

(line 130)

(line 150)
GOSUB 160 g Yes

(line 140)

Print one Initialize "
blank line record counter R:
R=0
§ line 160) f——
Incremant Initialize
record counter R: CR counter F:
R=R+1 F=0

| (line 170) (line 190)

Figure 6-5. Format Printing using GET #

Chapter 6: Peripheral Devices 265

CASSETTE FILE FORMATS

The description of data files given at the beginning of this chapter is a conceptually
accurate description of the way data is structured by computer systems in general. Data
files are subdivided into records and fields. You can maintain this classical organization
using appropriate CBM BASIC program logic, and we recommend that you do so. But
the actual organization of CBM cassette data files has little to do with fields and
records — as should be clear by now.

Every numeric field must be followed by a carriage return character (CHR$(13)).
Therefore, a file consisting of numeric fields only could be looked upon as a sequence of
numbers separated by carriage return characters. This may be illustrated as follows:

N<CR>N<CR>N<CR>N<CR>N<CR>

Nothing within the numeric file partitions fields into records, or distinguishes one
record from another. It is entirely up to your program logic to keep track of records as
repeating field sequences — if indeed such repeating field sequences exist.

String variables can optionally be divided into fields and records. You can use
commas (CHRS$(44)) to separate fields within a record, while a carriage return
(CHR$(13)) follows the last field of the record. Thus, a file containing string variables
only, with five fields per record, might be illustrated as follows:

<CR>»S<,>5<,>5<,»>S<,>S<CR>S<,>8<,>8<,>5<CR>

If you use comma and carriage return separators to divide string files into fields
and records as illustrated above, then all the fields of each record must be read by a
single INPUT3¢ statement.

You are not required to use comma and carriage return separators with string
variables. You will likely be better off separating all string variable fields using car-
riage returns. As for numeric data, rely on program logic to group fields into records.

Program logic needed to organize files into records and fields is usually self-evi-
dent; take the example of a mailing list. It takes no training as a programmer to see that
each name and address becomes a record, while parts of the name and address must be
treated as individual fields. There are a number of ways in which the parts of a name and
address could be divided into fields; each option would probably do as well as any other.
File organization is likely to be dictated on the needs of your program rather than the
structure of CBM cassette data files. Programming difficulties, if any, will surround the
PRINTH# and INPUTH# statement syntax.

Now we will take a simple program and, by looking at variations, identify syntax
that is and is not allowed.

Key in the following program:

18 OPEM 1.1.1

26 FOR I=1 TO 1@
30 PRINT#1.I+106
48 HEXT

S8 CLOSE 1

&8 STOP

7@ OPEN 1

33 FOR I=1 TO 1@
S8 INPUTH#1.J

188 PRINT J

118 HEXT

128 CLOSE 1

132 STOP

266 PET/CBM Personal Computer Guide

The OPEN statement on line 10 opens logical file 1, selecting cassette drive 1 fora
write operation. The FOR-NEXT loop on lines 20, 30, and 40 writes ten numbers to
cassette tape. Numbers are followed by carriage return characters because the
PRINT= statement on line 30 forces a carriage return on each execution, just as an
identical PRINT statement would cause a screen carriage return after displaying each
number. The logical file is closed on line 50. Thus the ten numbers can be visualized on

cassette tape as follows:

Statements on lines 70 through 120 read and display the ten numbers that were
written to cassette tape by statements on lines 20 through 50.

Let us execute this program and see what happens.

Get a blank cassette tape; wind the tape forward until magnetic surface appears in
front of the read gap, then mount the tape in cassette drive 1. Make sure that no cassette
drive keys are depressed.

LIST the program to make sure that it is in memory and correctly entered. Now

type RUN. The following message will be displayed:
SRESS PLAY AND RECORD OM TAFE #1

Depress these two keys on cassette drive 1. The CBM computer will respond by
displaying OK:
SRESS PLAY AMD RECORD ON TAFE #1
K
The tape cassette will wind forward while the ten numbers 101 through 110 are
written on tape cassette. After these ten numbers have been written, the drive stops
moving and the following message is displayed:

BREAK IN 6@
RERDY

The cursor flashes below the message. The STOP statement on line 60 caused the
break. Now depress the STOP key on drive 1 to raise the PLAY and RECORD keys.
Press the REWIND key to fully rewind the tape cassette, then press the STOP key again
to raise the REWIND key. Now execute the second half of the program by typing:

GOTO 7@

The message PRESS PLAY ON TAPE 1 will be displayed. Press the PLAY key on
cassette drive 1. The computer will respond by displaying OK:

ZRESS FLAY OM TAFE 1
0K

Chapter 6: Peripheral Devices 267

Nothing will happen for a while; the tape drive will move forward until the ten
numbers previously written are located. Then these ten number will be displayed in a
vertical column on the screen as follows:

161
182
163
104
165
186
167
18g
163
11@
EREAK IN 130
READY

The ten numbers are displayed in a vertical column because the PRINT statement on
line 100 causes one number to be displayed per execution.
The final message is caused by execution of the STOP statement on line 130.

BRERK IN 138
READY

If you forget to rewind the tape cassette before typing GOTO 70, then the drive
will search the cassette endlessly looking for data which occurred earlier on the tape.
You must now stop the tape cassette and stop program execution. Rewind the tape
cassette, but before you restart program execution, you will have to close file 1 in
immediate mode by typing:

CLOSE 1
Then restart with:

GOTO 7@

Now list the program again; end the PRINT statement on line 100 with a semi-
colon:

188 PRINT J:

Rewind the tape cassette; then type GOTO 70.

Once again the message PRESS PLAY ON TAPE 1 will be displayed. When you
press the PLAY key, OK will follow. After a short pause the ten numbers read off the
tape cassette will be displayed on a single line as follows:

181 182 163 184 185 16 187 182 183 118
EREAK IN 13@
=ERDY

As an experiment we will now change statements on lines 80 through 110 so that
the ten numbers are input using a single INPUT statement, as follows:

18 OPEN 1.1,1

28 FOR I=1 TO 1@
20 PRINT#1,I+168
48 MEXT

58 CLOSE 1

68 STOF

78 OFEN 1

S0 INPUTHL,HCL) HC2Y HCRD L N4, HOCS) NGB NCTD L HCED , HE9D , NC1@)
2@ FOR I=1 TO 18
188 PRINT NCIX
118 MEXT

126 CLOSE 1

138 oTOP

268 PET/CBM Personal Computer Guide

Again rewind the cassette and execute the second part of the program by typing
GOTO 70.

Once again you will be told to PRESS PLAY ON TAPE #1, and when you do so,
ten numbers will be read from the tape cassette and displayed on a single line, as illus-
trated previously. Thus it makes no difference whether you read the ten numbers from
tape cassette by executing one INPUTZ statement with ten variables in its parameter
list, or by executing one INPUTH# statement, with one variable, ten times.

Experimenting further with field separation punctuation, modify the first part
of the program, where data is written to the tape cassette as follows:

1@ OFEN 1.1.1
FOR I=1 TO 1@
36 PRINT#1,1+108
48 MEXT
45 C$=CHRE(SID
46 PRIHT#lJN(l);CSEN(?);C$;M(3);C$;N(4)JC$;H(5)
47 PEIHT#I,M(GDJCSJM(?);CS;N(B);C$;M(9);C$;ﬂﬁ1@)
S@ CLOSE 1
&8 STOF
7@ OPEN 1
3@ FOR I=1 TO 1@
2@ INPUT#1.J
188 PRINMT J
118 HERT
126 CLOSE 1
138 STOP

CHRS$(59) represents a semicolon. Rewind the tape cassette, advance the tape until
magnetic surface appears below the read gap and mount the tape in the tape drive. With
all keys up type RUN. When instructed to do so, press the PLAY and RECORD keys.
The data will record successfully and the following message will appear.

ERERK IN &8
RERDY
2

Rewind the cassette tape and type GOTO 70.
When instructed to do so, press the PLAY key on tape drive 1. Data is not read
successfully; an error message is displayed.

FILE DATA ERROR IN 3@
READY

You cannot use any punctuation other than carriage returns to separate numeric data
fields. You can use commas or carriage returns to separate string fields. To prove this
change the program as follows:

S DATA DHEﬁTNB,THREE,FUUR;FI?E,SIHJSEVEHJEIGHT,HIHEJTEH
18 OFEN '1.1.1

2@ FOR I=1 TO 1@

38 RERD M1

48 HEXT

45 C#=CHR$(44>

46 PEINT#IJM‘(I)iCi;ﬁiﬁz?ﬁC$Jﬂ$ﬂ3)iC$}M$f4)uﬁ$}ﬂ${5)
47 PRIHTﬂlfﬂiiéh;Ci;ﬂ${?hFC$5Mi(SD;C$;N$EED,CJMCIB)
s@ CLOSE 1

@ STOP

7E OFEW 1

2@ FOR I=1 7O 1@

3@ INFUTH#1,J¥

188 PRINT J%

118 HERT

128 CLOSE 1

138 STOP

e

h

Chapter 6: Peripheral Devices 269

Rewind the data cassette, advance the tape until magnetic surface appears below
the read gap, mount the tape in drive 1 and type RUN. When instructed to do so,
depress the PLAY and RECORD keys of tape 1. Data will record successfully on the
cassette. When the message:

BREAK IMN &4
READY
appears, rewind the cassette tape and type GOTO 70.

Press the PLAY key when told to do so. You will see the string variables 1 and 6

displayed, followed by the error message:

STRING TOO LONG ERROR IN 28
READY

What went wrong? The problem is in the INPUT3t statement on line 90. An
INPUTH statement will read all string fields up to the first carriage return. Therefore
M$(1) through M$(5) is input on the first execution of the line 90 INPUT4 statement;
however, only M$(1) has its value assigned to J$ since the comma is interpreted as a
field separator, not a record terminator. The second time the line 90 INPUT3 statement
is executed, M$(6) through M$(10) is input, since these are the fields lying between
two carriage returns. Once again only M$(6) is assigned to J$, since the comma is
interpreted as a field terminator. The third time the line 90 INPUT3 statement is
executed there is no data left to read and a file error is reported. This explains the
observed display. In order to resolve the problem we must execute INPUTH state-
ments with the same number of variables as there were in the PRINT# statement.
Consider the following program:

S DATA OME. TWO, THREE, FOUR, FIVE. SIX. SEVYEN, EIGHT HINE, TEM
18 OFEH 1.1,1

28 FOR I=1 TO 1@

38 READ M$CI

48 NEWT

45 CF=CHRF 440

46 PRINTHI1.MECLICEIMEFCEIICHMECIDCIIMECL)CF ME(S)
47 PRIMTH#1.MECED . CHIMFCTICFIMECED CHIMSCI)CHMS(10D
S8 CLOSE 1

&8 STOP

78 OFEM 1

30 INPUTH1 HNECL1) NEC2D, NEC(3), NECS D, NECS)

38 TNPUTHL NECED NECTI, HECE) HE(SD, e 180

1@ FOR I=1 TO 1@

185 PRINT H$(Ix:" ",

118 HEXT

128 CLOSE 1

13@ STOF

If you repeat the execution steps for the two halves of this program, accurately
manipulating the cassette tape as described for previous executions, then when the sec-
ond half of the program is executed, you will obtain the display:

OME TWO' THREE FOUR FIVE SIX SEVEN EIGHT HIME TEN

BREAK IN 138
RERDY

There are a few more experiments worth trying on your own.

Can a single INPUT4 statement read a number of string variables separated by
carriage returns? To check this out, change line 45 in the final program so that C$ is
assigned the value CHR$(13). Then re-execute the program.

How about mixing numeric and string fields in a single data file? To check this
out, create the ten string variables M$(I) as shown in the final program illustration, but

270 PET/CBM Personal Computer Guide

in addition, create ten numeric variables M(I) by adding the following statement on line
35:
35 M(I)=I+100
Now try various combinations of PRINT# character sequences on lines 46 and
47, and see what it takes to read these sequences back correctly with INPUT3 state-
ments on lines 80 and 90.

DISKETTE FILES

Program files and data files may be recorded on diskettes. Program files store
BASIC programs. Data files store numeric and string data.
There are three types of diskette data files:

1. Sequential files, which store data in a very compact way, but have restricted
file access capabilities.

2. Relative files, which require more diskette surface than sequential files to
store the same amount of data, but allow data to be accessed and manipulated
more efficiently.

3. Random files, which rely on your program logic for their structure.

Program files, sequential data files and relative data files are described in this
chapter. Random data files are described in Chapter 7.

A Comparison of Diskette and Cassette File Handling

Diskette file handling differs markedly from cassette file handling for these
two reasons:

1. Data can be accessed off a diskette very quickly, as compared to cassette file
access times.

2. There is no ‘“‘beginning” or ‘“‘end” to a diskette surface, as there is to a
cassette tape. A diskette drive can access any point on the diskette surface
with equal ease. In contrast, cassette tape has a beginning and an end.

Cassette and diskette file handling differ markedly because they use totally
different data storage formatting and access methods. Mechanical speed has very little to
do with it; the speed at which a diskette is rotated is comparable to the speed at which
cassette tape is moved.

Cassette tape stores data on a continuous track down the length of the tape; the
cassette drive moves the tape past stationary read and write heads in order to access any
part of the tape. -

In contrast, diskettes store data on a largernumber of concentric circular tracks.
The diskette drive read and write heads are on a moving arm that can position over any
track. The diskette is rotated to bring the required section of the selected track under the
read or write head.

In order to use diskettes you do not have to understand how information is stored
on the diskette surface, but some knowledge will help you program diskette files more
>fficiently. Therefore we will begin our discussion of diskette files by describing the way
data is recorded on the diskette surface.

W

[t

Chapter 6: Peripheral Devices 271

HOW DISKETTES STORE DATA

Diskettes store data on a number of concentric tracks. Tracks are divided into
sectors.

In order to imagine a single track, draw a circle to represent the diskette, then
draw a smaller concentric circle to represent one track on the diskette surface. This may
be illustrated as follows:

Edge of diskette
Center of diskette
One track on the diskette surface

Different diskette drives write different numbers of tracks on the surface of a dis-
kette. Some drives write on both surfaces of the diskette; other drives write on one sur-
face only. The CBM 2040 and 8050 diskette drives write on one surface of the dis-
kette; as summarized in Table 6-3, the 2040 drive writes 35 tracks, whereas the 8050
drive writes 77 tracks.

The diskette drive does not write data across the entire length of a track. To do so
would make diskette surface addressing very difficult. If data were recorded over the full
length of the track, no two tracks would hold the same amount of information, since no
two tracks have the same length. To resolve this problem, tracks are divided into sec-
tors. Every sector holds exactly the same amount of information. In the case of the 2040
and 8050 drives, 256 characters (bytes) of data are stored on each sector. Figure 6-6
illustrates this organization.,

Most diskette drives write the same number of sectors on every track, even
though the track closest to the edge of the diskette is much longer than the track closest
to the diskette center. The 2040 and 8050 diskette drives take advantage of the longer
tracks closer to the edge of the diskette by writing more sectors on longer tracks. Table
6-3 identifies the number of sectors written on various tracks. Track numbers begin at 0
for the outermost track. The innermost track has the highest track number.

If you manually rotate a CBM diskette in its cardboard jacket, you will notice a
single circular hole appear in the small circular window close to the center of the
cardboard jacket. A diskette with a single hole is said to be soft-sectored. In contrast,
there are hard-sectored disks which have as many holes as there are sectors. CBM disk-
ette drives can use either kind of diskette; soft-sectored diskettes are most commonly
used.

Diskette Directory and Block Availability Map (BAM)

Two tracks of every diskette are used to index the diskette.

The Directory track contains the name you assign to the diskette, together with
the names of all files, and their starting sector addresses.

The Block Availability Map identifies sectors which have, or have not, been allo-
cated to files.

l‘

272 PET/CBM Personal Computer Guide

256 bytes of data stored on one sector

Figure 6-6. A Diskette's Recorded Surface

Files stored on cassette tape do not need a directory at the beginning of the tape. If
ten files are stored on a cassette tape, and a particular access specifies the sixth file,
having a directory at the beginning of the tape would not help the drive locate the sixth
file any sooner. Since cassette files can have any length, there is no way of translating a
cassette file number into a cassette tape position. You can take your chances winding the
cassette tape forward to some position that precedes the file you want, thereby reducing
cassette search time. Otherwise the cassette drive must read past the first five files in
order to locate the beginning of the sixth file.

A diskette drive, in contrast, can go directly to the beginning of any file on the
diskette surface, since every diskette sector is equally accessible. To make this possible,
every diskette has a directory which lists the names and beginning sector addresses for
all files stored on the diskette. The directory also records the file type and its current
size. When a diskette data file is opened, the drive first reads the diskette directory, from
which it obtains the sector address where the opened file begins. The drive can then go
directly to the beginning of the opened file.

But what about the records of a diskette data file?

Chapter 6: Peripheral Devices 273

Table 6-3. Diskette Drive Specifications

Characteristics 2040 Drive 8050 Drive
Total Capacity 176,640 bytes 534,272 bytes
g::ﬁ':nﬁ;p;f:sy - 170,180 bytes 527,812 bytes
Tracks 35 77
Sectors per track Tracks Sectors Tracks Sectors
0-16 21 0-38 29
17-23 20(or 197 39-52 27
24-29 18 54-85 25
30-34 17 66-76 23

Bytes per sector 256 256

Total blocks (sectors) 690 2087

ok vty " s

Diractory track 18 39

*Model 2

Relative Data Files

All records in a relative file have the same length. It is easy to compute sector
addresses for individual records of a relative file. Suppose the relative file records fit
exactly two per sector. (This is unlikely to happen by chance, but it makes our illustra-
tion easy to follow.) The tenth record of this relative file will then be found on the fifth
sector allocated to the file. Relative data files are available with CBM BASIC versions
4.0 and higher, using DOS 2.0 and higher.

Sequential Data Files

The records of a sequential file can have different lengths. We cannot compute
the sector on which a particular sequential file record is to be found. since the lengths of
individual sequential file records are unknown. The diskette drive can go directly to the
beginning of a sequential file, since the beginning sector address is held in the diskette
directory, but having gotten to the sequential file, it must access records sequentially, as
a cassette drive would. For example, there is no way of reaching a sequential file’s tenth
record without first reading records 1 through 9. Figure 6-7 conceptually illustrates the
distribution of ten records across sectors for relative and sequential files.

All versions of CBM BASIC support sequential data files.

274 PET/CBM Personal Computer Guide

A Relative File

Sector No.: N N+ 1 N+ 2 N+3 N+ 4 etc

—— Y — —— . ——————y —eey——

Record No.: 0 1 2 3 4 5 6 7 8 9 etc.

A Sequential File

Sector No.: N N+ 1 N+ 2 N+ 3 N+ 4

— J —r T — \ h—r T —_ T

Record No. 0 1 2 3 4 5 6 7 8 9

Figure 6-7. Record/Sector Correlation for Relative and Sequential Access Files

Relative versus Sequential Data Files

If sequential file records must be read sequentially, much of the diskette’s random
access capability is lost, so why bother with sequential files? The answer is that sequen-
tial files store information more densely than relative files. Therefore, sequential
files make better use of the diskette surface. To illustrate this point, consider the
following two names and addresses:

Cornelius J. Winkleberger
257631 Avenue of the Americas

Billinghampton
California 92804

Joe R. Smith
5 N St.

York

lowa 50307

Suppose these two names and addresses are part of a mailing list data file. Each
name and address will become one record within the data file. A relative data file must
assign the same diskette space to every name and address. To avoid abbreviations the
assigned diskette space must be sufficient to accommodate the longest name and
address. Therefore, all shorter names and addresses will leave some space unused; and
unused record space is wasted record space.

But a sequential file assigns each name and address the space it needs, however
short or long this particular name and address may be. No diskette space is unused, and
therefore none is wasted.

No restrictions are placed on the way you access or modify relative files. Since
relative files have fixed length records that can be addressed individually, you can access
a single record to read it or to change it. For example, you could rewrite the 10th name
and address in a relative data file containing 20 names and addresses, leaving all other
records unaltered. You can add records to a relative data file so long as the diskette has
available space. You can delete any relative fite record.

On the other hand you must handle sequential files much as you would handle
cassette files. Records must be read sequentially, beginning with the first record of the
file. You can append new records to the end of a sequential data file, but you cannot
write new records into the middle of a sequential data file. Instead, you must rewrite the
entire sequential file as a new file, modifying records in transit, as needed. The trade-off
is that sequential files make better use of the diskette surface, but they are harder to
process.

N

il

Chapter 6: Peripheral Devices 275

Sector Addressing

The sectors assigned to any diskette data file are unlikely to be physically
sequential on the diskette surface. For example, when you add records to an existing
data file, the new records may run into the beginning of the next file; therefore the file
will have to be continued wherever unused sectors are available on the diskette surface.
The file contracts when you erase records. Vacated sectors must be made available to
other files. Therefore diskette drive logic assumes that sectors assigned to any data
file will be scattered all over the surface of the diskette. This presents no problem
when dealing with sequential files. So long as each sector points to the next sector, the
drive can work its way across the diskette, sector by sector, reading the sequential file.
But for relative files the problem is more complex, since drive logic must be able to
compute addresses of individual records. Therefore a record’s displacement from the
beginning of the file must be converted into a sector displacement. Looking again at a
file that has two records per sector, a request to access the 10th record becomes a
request to access the 5th sector of the relative file. Since sectors are not sequential on the
diskette surface, the relative file must maintain a sector index. This may be illustrated
conceptually as follows:

Sequential Actual track and sector
sector number address

Record on which record

number begins Track no. Sector no.
1 1 11 4
2 1
3 2 11 5
4 2
5 3 11 6
6 3
7 4 13 9
8 4
9 5
10 5 13 10
11 6 9 3

Thus record number 6 is on the third sector assigned to the file. This sector is the sixth
sector on track 11.

The term ‘‘side sector’’ is used to describe the relative file sector index. Cur-
rently, the 8050 diskette drive cannot use the entire diskette capacity for relative files
because it runs out of space for side sectors. That is why Table 6-3 shows relative
files using just 180,000 of the 8050 diskette’s half million bytes. Future versions of
the 8050 diskette drive will remove this restriction.

PROGRAMMING DISKETTE FILES

Different program logic is required by program files, sequential data files and rela-
tive data files. Moreover, program statements allow you to perform a variety of very
necessary diskette ‘‘housekeeping’’ operations.

276 PET/CBM Personal Computer Guide

Diskette File Names

Diskette file names follow normal CBM BASIC label rules. Normally file names
have 16 characters or less. Some file names are restricted to a maximum of 16 charac-
ters, but it is a good idea to observe this limit, even where it is not enforced.

DOS statements identify files via the file name. You can specify the complete file
name, or you can provide the first few characters of the file name, followed by an
asterisk (*) in which case the first file name encountered with matching leading charac-
ters will be selected. Here are some examples:

Specified filename: PAR #

Selected filenames: PARITY)

PARITY,SEC The first file whose name
PARITY,N12 (begins with PAR will be selected

PARTITION
etc.
Specified filename: »
Selected filenames: Any and all, since no characters

precede the # . There the first
file encountered is selected.

You can also search for file names by comparing some characters, but not others.
Characters that are not to be compared are specified using guestion marks (?). Here is
an example:

Specified filename: N??7,SEQ
Selected filenames: NUM,SEQ
NXY,SEQ The first file whose name

NAB,SEQ is N??7.SEQ, where ? can be any character,
NRA,SEQ s is selected
etc

Instructions that specify file names can use question marks and asterisks together.
Here is an example:
Specified filename: NUM??#
Selected filenames: Any filename with five
or more characters, the
first three being NUM

The first encountered
filename is selected.

Versions of the Disk Operating System

CBM BASIC disk handling statements rely on a group of programs referred to col-
lectively as a disk operating system (or DOS). There is very little you need to know
about the disk operating system in order to use it, just as you need to know little or
nothing about the BASIC interpreter in order to write BASIC programs. But you should
be aware of the fact that many CBM disk operating system versions have been
released. The version is identified by a number following DOS. Currently, versions
2.1 through 2.5 are in use. These are the DOS versions we are going to describe.

-ooan
-
oT

- .
¢ heen
T 10ns

Chapter 6: Peripheral Devices 277

Versions of CBM BASIC

Recall that several versions of CBM BASIC are in general use. BASIC 3.0 and ear-
lier versions were shipped with atl CBM computers until March of 1980. Since then,
BASIC 4.0 has been shipped on the 8000 series.

BASIC versions 1.0, 2.0 and 3.0 are very similar. As stated in the preface, we refer
to these three versions of BASIC collectively as BASIC<3.0. Version 4.0 is referred to as
BASIC 4.0.

BASIC<3.0 supports sequential and random files. BASIC 4.0 supports
sequential, relative or random files.

BASIC 4.0 recognizes all statements from lower numbered versions of BASIC.
It also has some additional disk handling statements not present in lower BASIC ver-
sions. Therefore, if your CBM computer has BASIC 4.0, you can use any disk handling
BASIC statements. The converse is not true. For example, if your CBM computer has
BASIC 1.0, you cannot use any BASIC 4.0 statements.

BASIC 4.0 does not allow the second cassette drive to be used if disk drives are
present.

BASIC 4.0 disk statements assume that disk drives are the default physical
unit; if no physical unit is specified, physical unit 8 is assumed. In contrast, BASIC<3.0
statements assume cassette drive 1 (physical unit 1) if no physical unit is specified.

Although BASIC 4.0 will execute all BASIC<3.0 statements, there are some
file errond status incompatibilities that result when you use BASIC<3.0 file han-
dling statements with BASIC 4.0. For example, BASIC<3.0 does not support relative
files; however, if you open a file using BASIC<3.0 statements and you do not specify
the file type, BASIC 4.0 will open a relative file. Also, if you execute a file operation
using BASIC<3.0 statements and the file operation is illegal under BASIC<3.0, but
legal under BASIC 4.0, then the error indicator will turn red at the diskette drive, the
disk operation is not executed, but BASIC 4.0 will report an OK disk operation status.

OPENING A DISKETTE FILE

Twelve memory buffers in each diskette unit are used to access files on dis-
kettes held in drives 0 and/or 1. As soon as you access any diskette file, two of these
buffers are used to support overhead operations. That leaves ten buffers in each disk-
ette unit (two drives) via which the data files themselves can be accessed.

Two buffers are needed for each open sequential file. Three buffers are needed
for each open relative file. Therefore BASIC<3.0 can have up to five sequential files
open simultaneously on each diskette unit (but see below). The number of files which
can be held open simultaneously by BASIC 4.0 depends on the combination of
sequential and random files being accessed. For each diskette unit, the following
combinations are allowed:

0 Relative and 5 Sequential files
1 Relative and 3 Sequential files
2 Relative and 2 Sequential files
3 Relative and 0 Sequential files

You can increase the total number of files that can be open at one time by adding
more diskette units, but only up to a point, Each open file requires a unique secondary
address, and only 13 secondary addresses are available for data files.

278 PET/CBM Personal Computer Guide

Secondary Addresses (BASIC<3.0)

BASIC<3.0 uses 16 secondary addresses: 0 through 15. Every BASIC<3.0
OPEN statement must specify a secondary address. BASIC 4.0 automatically
assigns secondary addresses.

BASIC<3.0 secondary addresses are used as follows:

1. Address O is used to load programs from diskette into CBM computer
memory.

2. Address 1 is used to save programs from computer memory on a diskette pro-
gram file.

3. Secondary addresses 2 through 14 are used to access data files. You can select
any one of these secondary addresses, providing it is not being used by
another OPEN data file.

4. Secondary address 15 opens a special “command channel”’ which is used to
access diskette status and to perform any of the special diskette operations de-
scribed later in this chapter, under *‘Diskette Housekeeping Operations.”

The Command Channel (BASIC<3.0)

The command channel needs special mention since it is very important.

BASIC 4.0 automatically opens a command channel when any diskette file is
opened. You do not have to execute any statement in order to open the command chan-
nel using BASIC 4.0.

Using BASIC<3.0 you should always OPEN the command channel before per-
forming any diskette operation; you should leave the command channel open until you
have completed all diskette operations. Use the command channel with BASIC<3.0 to
interrogate diskette status, and to perform special diskette operations.

Opening Diskette Data Files (BASIC 4.0)

With BASIC 4.0 you OPEN diskette data files using the DOPEN# statement.
(You can also use the OPEN statement since BASIC 4.0 includes all BASIC<3.0 state-
ments.)

The DOPEN# statement must specify a logical file number and a file name. The
diskette drive is assumed to be DO unless you include the parameter D1 to specify drive
1.

If you specify a record length using the LX parameter, then a relative file is
assumed. You can read from a relative file, or write to it; no parameter specifies a read
or write operation.

If no record length is included in the DOPEN# parameter list, then a sequential
file is assumed. For a sequential file you must add the parameter W if the file is to be
opened for a write operation; a read operation is assumed as the default case.

N

3 Chapter 6: Peripheral Devices 279

The physical unit number is assumed to be 8 unless you add an ON UZ parameter.
Here are some examples of BASIC 4.0 DOPEN3 statements:

0

A 1@ DOPEM#1. "MAIL" Open logical file 1 to access a sequential file named MAIL for a read
operation. The diskette is in drive 0.

S8 DOPEN#1."MAIL".D1.HW Open logical file 1 to access a sequential file named MAIL for a write
operation. The diskette is in drive 1.

. 2363 DOPEN#S, "DATALIST".DM ON US Open logical file 5 to access a sequential file named DATALIST for a

=T read operation. The diskette is in drive O of a diskette unit being
accessed as physical unit 5.

- 18a DOPEN#2Z. "MAIL".L168 Open logical file 2 in order to access a relative file named MAIL. The
diskette is in drive O. If the relative file is new, then its records
will each have 100 characters (bytes). If the file already exists,

o1 then it must have been assigned 100 characters (bytes) when it

was first opened. Read and write accesses are both allowed.
7} 25 DOPEM#Z, "SAMPLE".LZ28. D11 Open logical file 3 to access a relative file named SAMPLE for a read
or write operation. The diskefte is in drive 1. If the file is being
opened for the first time, then its records will have 20 characters

0 (bytes) each. If the file already exists, then it must have been
e~ assigned 20-character (byte) records when it was first opened. |
|
File names can be specified using a string variable instead of a string. For exam-
ple, the last example could be replaced by:
26 S$="SAMPLE" '
5 DOFEN#2,5$.L20, D1
15 |
183
Opening Sequential Diskette Data File (BASIC<3.0)
T Using BASIC<3.0 you open diskette files using the OPEN statement. The
U OPEN statements below duplicate those DOPEN=# statements shown opening sequen-
(e} tial files above. Remember, BASIC< 3.0 cannot open or handle relative files. Secondary
addresses have been selected arbitrarily for the OPEN statements below.
18 OPEM 1.8,2 "MAIL.SEQ"
Sa OPEM 1.8.7 “1:MAIL. SEEI..LIRITE“
230 OFEN S.5.2 "@:DATALIST,SER"
it
e- The string portion of the OPEN statement parameter list can be created using a |
string variable. For example, the OPEN statement on line 10 could be replaced by these
e two statements: i

Ve S M$="MAIL.SEQ"
18 OFEN 1.2.2.M%

’; Here is a more complex example that replaces the OPEN statement on line 50:
a

45 ME="MAIL.SEQ"
ial S@ OPEN 1.8,7."1 "+ M$+", WRITE"

File Opening Errors
These are the conditions that can cause errors when you open a data file:

1. You will get a FILE NOT FOUND error if you OPEN a new sequential data
file for a read operation. The sequential file must exist, since a new file will be
empty when created, and you cannot read data out of an empty file.

280 PET/CBM Personal Computer Guide

2. If you open an old file but specify the wrong file type, then you will get a FILE
TYPE MISMATCH error. This occurs if you open an old relative file as a
sequential file, or if you open an old sequential file as a relative file, or if you
open a program file as any type of data file.

3. You cannot open an old sequential file for a write access. If you do, you will
get a FILE EXISTS error. You can only write into new sequential data files.

Misspelling a file name in an OPEN statement is an error that can cause you a
lot of trouble without generating a warning. The disk operating system will simply
assume that the misspelled file is a new file. If opening the new file would otherwise
be valid, no error is reported.

CLOSING A DISKETTE FILE

To close any diskette data file you execute the BASIC 4.0 statement:

DCLOSE#N

or the BASIC<3.0 statement:
CLOSE N

where N is the logical file number appearing as the first parameter in the OPEN or
DOPEN=# statement.

You must CLOSE a file after writing to it, otherwise some data written to the
file may be lost.

You do not have to CLOSE a file after reading from it, but to do so is good pro-
gramming practice.

All open files are automatically closed by the computer when you execute an END
statement. (This assumes that the diskette drives are still turned on.) Nevertheless it is
good programming practice to close files individually using CLOSE statements rather
than using the END statement to close all files. This subject was discussed in detail ear-
lier in this chapter for cassette data files. The discussion on closing cassette data files
applies also to diskette data files.

DISKETTE ERRORS AND ERROR STATUS

There is a red warning light which acts as an error indicator on all CBM dis-
kette drives. This error indicator lights up red when a diskette operation is not suc-
cessful. No other diskette operation can be performed until this error indicator has
been cleared. To clear the error indicator, stop program execution by pressing the
STOP key, then read diskette error status.

It is a good idea to read status after every diskette operation, and to include status
checking as a routine part of all diskette handling program logic.

Recall that you cannot write to a diskette if its write-protect slot is covered. The
diskette is said to be write-protected. If you try to copy a file to a diskette that is write-
protected, then the CBM computer will hang up. The computer will endlessly try to
write, but the diskette will not send back an error status. This situation manifests itself
when the computer seems to be doing nothing, but you cannot stop program execution
by pressing the STOP key. When this happens, you must remove the diskette from its
disk drive, turn power off at the CBM computer, then turn power on again.

.

Chapter 6: Peripheral Devices 281

Clearing Diskette Error Status (BASIC 4.0)

Using BASIC 4.0 you can clear diskette errors in immediate mode, or in pro-
gram mode.

To clear error status in immediate mode, execute an immediate mode PRINT
statement to display numeric variable DS or string variable DSS.

Numeric variable DS returns status as a decimal number which should be
interpreted using Table 6-2.

DS$ displays four parameters as follows:

ThsE
HH ERROR MESSAGE TT S5
e it

| L—-Sector accessed
Track accessed

Type of error

Error number

Diskette error messages are given in Appendix B.
A program written using BASIC 4.0 should test diskette status by referencing
variable DS as follows:

28 IF DS <> @ THEN PRINT "ERROR":

Following any diskette error this statement will clear the error status, stop pro-
gram execution and display the message:

ERROR
BREAK IN HxKX

XXXX is the line number on which the STOP statement is located. A more informative
variation displays DS$ to give the operator some idea what happened. Here are the
necessary statements:

2@ IF DS <> @ THEN PRINT DS#:STOP

Following any diskette error, this statement will clear the error status, stop execu-

tion and display the message:

HN ERROR MESSAGE TT S5

BREAK IM XXX

READY

]
NN is the error number;, see Appendix B for a summary of error numbers and what they
mean. When the error occurred the sector being accessed is identified by TT (track) and
SS (sector).

Diskette Errors (BASIC<3.0)

Using BASIC<3.0 you cannot access variables DS or DS$. To examine error
status, you must OPEN a logical file specifying physical unit 8 with secondary
address 15. You must then input four string variables and display them. In program
mode this may be illustrated as follows:

18 OPEN 1.8.15
20 INPUTH#1.A$.B$.C$,D$

36 PRINT A%.B$.C$.D$
46 CLOSE 1

282 PET/CBM Personal Computer Guide

The INPUT4#1 statement will not execute in immediate mode.

AS, BS, CS$ and D$ are the error message number (A$), the error message (B$),
the track number (C$) and the sector number (D$) as illustrated above for DS$ using
BASIC 4.0. AS, BS, C$ and DS$ are arbitrarily selected string variable names. On lines 20
and 30 above you could use any four string variable names instead of A$, B$, C$ and
DS$.

When writing programs using BASIC<3.0 you should OPEN a logical file with
physical unit address 8 and secondary address 15 before beginning any diskette access.
Then test error status following every diskette operation by inputting the error message
number. If this number is 0, the disk operation was successful. Here is necessary pro-
gram logic:

1@ OFEM 15.8.15

A Disk operation statement here

3 REM TEST DISKETTE STATUS

IMFUT#15. A%, B%. 08, 0%

IF YALCAEICHE THEN PRIMT A$. B, CF.DF:5T

[—
o T
s

If a program contains numerous disk operations, then the statements shown on
lines 170 and 180 above will reappear frequently. You may be tempted to put these
statements into a subroutine. You can do so, but it will be more difficult to tell where the
disk error occurred, since the STOP statement will always report a break on the same
subroutine line. In contrast, if statements on 170 and 180 are repeated wherever they
are needed, then by looking at the line where the break occurred, you can tell which
STOP statement caused the break, and therefore which disk access caused the error.

DISKETTE HOUSEKEEPING OPERATIONS

In addition to reading and writing data files, file handling BASIC statements allow
you to perform these operations:

Prepare a new diskette.
Erase an old diskette and prepare it for reuse.

Display a diskette’s directory to see what files are stored on the diskette, and
how much unused diskette space remains.

4. Check the diskette for sectors that have been allocated to a file but are still
unused. Make these sectors generally available again, thereby increasing
available diskette space (BASIC 4.0 only).

5. Copy a file.

6. Copy an entire diskette.

7. Rename a file (BASIC 4.0 only).

8. Delete a file from a diskette, or replace file contents.

Every BASIC<3.0 file or disk operation must begin with an OPEN statement.

You can then read, write or perform one of the housekeeping operations described
above. The operation must end with a CLOSE statement.

Chapter 6: Peripheral Devices 283

Using BASIC 4.0 you must OPEN a data file before reading from it or writing
to it, and you must then CLOSE the data file. However the housekeeping operations
described above are executed by special statements that do not need to be preceded by
an OPEN, or followed by a CLOSE.

We will describe all of these housekeeping operations before looking at file han-
dling program logic.

Although housekeeping operations are frequently performed in immediate mode,
they can be executed in program mode.

BASIC statements used to perform housekeeping operations are described fully in
Chapter 8. If you have trouble following any discussion because you do not understand a
BASIC statement, read the BASIC statement description given in Chapter 8, then
return and continue.

DISKETTE PREPARATION AND INITIALIZATION

You cannot take an unused diskette, load it into a disk drive and write data on
it. First the diskette surface must be prepared. Sectors must be marked off on tracks,
then the directory and block availability map must be written, The diskette is also
assigned a name. You can prepare a used disk; this erases all prior data and readies
the diskette for reuse.

You will usually prepare a diskette in immediate mode.

Diskette Preparation (BASIC 4.0)

Using BASIC 4.0 you prepare a new diskette using the HEADER statement, as
follows:

HEADER "“DISK NAME"', DX, IYY

“DISK NAME”’ can be any string name with up to 16 characters. YY is a number
which you must assign to the diskette. X is the drive number holding the diskette; it
must be 0 or 1.

It takes approximately two minutes to prepare a diskette. If for any reason the
diskette cannot be prepared, the following message is displayed:

?BAD DISK

This message will be displayed for any of these reasons:

You forgot to load a diskette into the selected drive.
You specified the wrong drive in the HEADER statement parameter list.
3. You forgot to specify a diskette number in the HEADER statement parameter
list.
The diskette is write-protected (the write-protect notch is covered).
5. The diskette has a defective magnetic surface.

When preparing a used diskette you only need specify the drive number in the
HEADER statement parameter list. If you specify a disk name, then it will replace the
old disk name; if you do not, then the old disk name will be retained. If you specify a
disk number, then it will replace the old disk number; if you do not, the old disk number
will be retained. But you cannot specify a new disk number unless you also specify a new
disk name. You will get a syntax error if you try it.

284 PET/CBM Personal Computer Guide

Recall that BASIC 4.0 assumes that the diskette drive is physical unit number 8. If
for any reason you are initializing a diskette using a disk drive with a different physical
unit number, then you must add this information to the HEADER statement parameter
list using: ON UZ or, UZ, where Z is the physical unit number.

It takes just a few seconds to prepare a used diskette.

Below are some examples of immediate mode HEADER statements. Subse-
quent dialogue is not shown.

HERDER "SAMFLE".D&., 181 A diskette is prepared on drive 0. The diskette is given the name
SAMPLE and the number 01.

HERDER D@ An old diskette is prepared on drive 0. The old name and diskette
number are preserved.

HEARDER "MEW", D1 An old diskette is prepared on drive 1. The diskette is given the new

name NEW, but it retains its old diskette number.

HEADER "SAMFLE". D@, I@S, OW U7 Adiskette is prepared in drive O of a diskette drive with physical unit
number 7. The diskette is given the name SAMPLE and the num-

ber 05.
HERDER D1. I81 The HEADER statement will not execute because a new diskette
F SYNTAX ERROR number has been specified without a new disk name.

Diskette Preparation (BASIC<3.0)

To prepare a diskette using BASIC<3.0 you must OPEN the diskette command
channel, then execute a PRINTH: statement using the logical file specified in the OPEN
statement parameter list. The PRINTH# statement must have the following character
string enclosed in quotes:

“NEWX:DISKNAME, YY"

NEW may be replaced by N. X is the drive number; it must be 0 or 1. DISK-
NAME is the name which will be assigned to the diskette; it can be any valid 16
character string. YY is the diskette number.

The OPEN statement which opens the diskette command channel can specify any
logical file number, but it must specify physical unit number 8 and secondary address 15.

Here are some examples of BASIC < 3.0 diskette initialization statements:

JFEN 1.8,15 A diskette is initialized in drive O. It is given the name SAMPLE and
FRINT#1. "M@ SAMFLE.&1" the number 01.

OFEM 2.8.15 A diskette is initialized in drive 1 with the name NEW and the number
SRINT#Z, "HEM1 *NEW,.@1" 01.

BASIC<3.0 diskette preparation does not always work on a CBM computer
that has BASIC 4.0. Sometimes the disk drive continues to spin the diskette after
initialization has been completed.

BASIC<3.0 allows you to prepare an old diskette, in which case everything pre-
viously stored on the diskette is erased, and the surface is prepared for reuse. You do
not have to specify a diskette number in the PRINT3k parameter list when preparing an
old diskette; the old diskette number will be used if no new number is specified.

Chapter 6: Peripheral Devices 285

Diskette Initialization (BASIC<3.0)

When using BASIC<3.0, you must initialize a diskette that has data stored on
it before opening a file. To initialize the diskette you OPEN the command channel and
execute a PRINTZ statement with the letter *‘I”” or the word “INITIALIZE”, plus the
drive number appearing as a string variable in the PRINTZ statement parameter list.
The drive number can be omitted, in which case diskettes in both drives will be
initialized.

Diskettes are usually initialized in program mode.

When a diskette is initialized, no data on the diskette surface is changed.

Here are some examples of BASIC<3.0 diskette initialization statements:

18 OPEM 1.3.15 Initialize a diskette in drive O.
o8 PRINT#1,"I@"

S OPEN 2.8.1 Initialize two diskettes in drives O and 1.

+ 19
1@ SRINT#1, "INITIALIZE"

You do not have to initialize a diskette that you have just prepared. Preparation
also initializes the diskette.

DISPLAYING THE DISKETTE DIRECTORY

Displaying the Diskette Directory (BASIC 4.0)

Before accessing any diskette, it is advisable to display the diskette directory.
Using BASIC 4.0 this is done using the DIRECTORY statement. The DIRECTORY
statement is usually executed in immediate mode. Here are some examples of the direc-
tory statement:

DIRECTORY Display directories for diskettes in drives O and 1.

DIRECTORY D1 Display directory for diskette in drive 1.

DIRECTORY D1 OW LS This statement also displays the directory for the diskette in drive 1
since the physical unit 8 is the default physical unit.

DIRECTORY D@ Display the directory for the diskette in drive 0.

The word CATALOG can be used instead of DIRECTORY.
The directory is displayed as follows:

0 “'Diskette name " NNXX

BBBB “Filename” Type
BBBB 'Filename" Type
etc.

YYYY BLOCKS FREE

The diskette name and number appears at the top of the display in a reverse field.
NN is the diskette number. XX is the DOS version number. Below a list of file names is
displayed. These are the files recorded on the diskette. To the left of the file name is the
number of blocks (sectors) assigned to the file. To the right of the file name is the file
type: REL for a relative file, SEQ for a sequential file, or PRG for a program file. Finally,
the number of unused blocks (sectors) is displayed. (There are also user files which are
described in Chapter 7.)

286 PET/CBM Personal Computer Guide

There must be a diskette in every drive specified by the DIRECTORY state-
ment. A very common error is to type DIRECTORY when you want to display the
DIRECTORY for a diskette in drive 0. If there is no diskette in drive 1, then the error
indicator will turn red and no directories will be displayed. Remember, you must clear
the error indicator by reading diskette status (type 7DS$<CR>). You cannot use the
diskette drive again until the error indicator has been cleared. You will also get an error
indication if you specify the wrong drive in the DIRECTORY statement. For example, if
there is a diskette in drive 1 but you enter the immediate statement:

DIRECTORY DO

then you will get an error indication, but no directory.

Displaying the Diskette Directory (BASIC<3.0)

Using BASIC<3.0 you display the directory using a LOAD statement as follows:
LOAD "$X".Y

X is the drive number (0 or 1) and Y is the physical unit number (usually 8). The
dialogue that follows is standard program-loading dialogue. After the program is loaded,
you list it in order to display the directory. The following example displays the directory
for a diskette in drive 0.

LORD “#@", 2
SEARCHING FOR #@
LOADIMG

RERDY

LIST

COLLECTING A DISKETTE

BASIC 4.0 has a COLLECT statement which you can use to ‘“houseclean’’ a
diskette.

The COLLECT statement identifies sectors that have been assigned to data files
but are unused. These sectors are made available again, and the diskette directory is
modified appropriately.

The COLLECT statement is usually executed in immediate mode, as follows:

COLLECT Collect diskettes on both drives.

COLLECT D& Collect the diskette in drive O.

Some versions of BASIC 4.0 have a problem with the SCRATCH statement
that prevents files from being scratched if they were improperly closed. If your CBM
computer has this problem you can overcome it by executing a COLLECT statement
before the SCRATCH. The improperly closed file will then be deleted by the SCRATCH
statement. '

Chapter 6: Peripheral Devices 287

COPYING FILES AND DISKETTES

You should make backup copies of every file that you wish to keep perma-
nently. At least one copy of the file should be on a different diskette. Keeping a copy of
the file on the same diskette will not help if the entire diskette is erased by accident.

CBM BASIC statements allows you to copy an individual file or backup an entire
diskette.

Copying Files (BASIC 4.0)

The BASIC 4.0 COPY statement lets you copy a single file or an entire dis-
kette. But the COPY statement will only address one physical unit, therefore copies
must be made on the same diskette, or using the two drives in a single diskette unit.

If a file name is specified in the COPY statement parameter list, then a single file is
copied. If no file name is specified, then all files on the diskette are copied. Here are
some immediate mode examples:

COPY D@ TO I1 Copy all files on the diskette in drive O to the diskette
in drive 1.

COFY DB, “"TESTDATA" TO D1. “TESTDATA" Copy file “TESTDATA" from the diskette in drive O to
the diskette in drive 1. Keep the filename.

COPY D1. “"TESTDATA" TO D@, “"NEWTEST" Copy file “TESTDATA" from the diskette in drive 1 to
the diskette in drive 0. Rename the file “NEWTEST.”

Copying Files (BASIC<3.0)

In order to copy files using BASIC<3.0, use the PRINT3 statement with the
following string parameter:

“COPYM:NEWNAME=N:OLDNAME"

Instead of COPY you can have the letter C. N is the drive number holding the (old)
source file diskette; OLDNAME represents the name of the source file. M is the drive
number holding the (new) destination file diskette; NEWNAME represents the name
which will be assigned to the new destination file.

Here are some examples:

OPEN 15.8.15 Copy a file named “MAILDATA" from the diskette in
PRINT#15., “COPY!:MAILDATA=@:MAILDATA" drive O to the diskette in drive 1. Keep the filename.
CLOSE 1S5

OFEN 15.,8.15 Copy file “TESTDATA" from the diskette in drive 1 to
SRINT#15, "CO: NEWTEST=1:TESTDATAR" the diskette in drive 0. Rename the file “NEWTEST.”
CLOSE 15

Concatenating Files (BASIC<3.0)

In the course of copying files, the BASIC<3.0 PRINTH statement allows two,
three, or four source files to be concatenated into a single destination file. The follow-
ing immediate mode example concatenates data files DATA1 and DATAZ2, taken from
the diskette in drive 0, and writes them to the diskette in drive 1, assigning the name
DATAX to the concatenated data file:

OFEM 15,8.15

FRINT#15, "C1 ' DATAX=1:DATAL.1:DATAZ"
CLOSE 15

288 PET/CBM Personal Computer Guide

Concatenated source files do not have to come from the same diskette, as shown
above. DATAX could be concatenated from data files residing on the same diskette
and/or the other diskette.

File Copying Errors

A copy operation cannot specify a destination file name that already exists. If it
does, the COPY operation will not occur. The error light of the diskette drive will turn
red; when you fetch error status, a FILE EXISTS error will be reported.

When copying all files from one diskette to another using the BASIC 4.0 COPY
statement, if a source file name is found to exist on the destination diskette, then the
COPY operation stops immediately. The error indicator at the diskette drive turns red.
No files get copied if their names appear on the source diskette directory after the dupli-
cated file name.

Duplicating a Diskette

You can copy all files from one diskette to another; you can also backup a dis-
kette by making a duplicate of it. The two are not the same. The backup operation cre-
ates a destination diskette which is an exact duplicate of the source, with the same dis-
kette name and number as well as the same files. In contrast, if you copy all files from a
source diskette to the destination diskette, the destination diskette name does not
change, nor do any files which were previously on the destination diskette, Thus the
destination diskette will have a different name, and although it will have all of the source
diskette files, it may also have additional files which the source diskette did not have.

Backup a Diskette (BASIC 4.0)

Use the BASIC 4.0 BACKUP statement to duplicate a diskette. You can copy
from drive 0 to drive 1 or from drive 1 to drive 0 of any valid physical unit. Here are
some examples of the BACKUP statement executed in immediate mode:

BRCKUF D& 7O D1 Make a copy of the diskette in drive O on the diskette in drive 1.
BRCKUF Il TO D& ON US Make a copy of the diskette in drive 1 on the diskette in drive O,

The disk unit is addressed as physical unit 5.

The BACKUP statement lets you copy onto a diskette that has not been pre-
pared. If necessary the destination diskette is prepared before the BACKUP operation
begins.

Duplicating a Diskette (BASIC<3.0)

Use the PRINT# statement to copy a diskette using BASIC<3.0. You can copy
from drive 1 to drive 0, or from drive 0 to drive 1. You cannot copy from a drive in one
physical unit to a drive in another physical unit. The PRINT3 statement must have the
following string variable in its parameter list:

“DUPLICATEN=M"'

Instead of DUPLICATE you can use D. N is the destination drive number; M is the
source drive number.

Chapter 6: Peripheral Devices 289

Here is an immediate mode example:

OFEM 15.8.15 Make a copy of the diskette in drive O on the diskette in drive 1
PRINT#1S, "Di=@"
CLOSE 15

RENAMING A FILE

You can rename any program or data file. Most frequently program files are
renamed in the normal course of writing and correcting programs.

Renaming a File (BASIC 4.0)

Use the BASIC 4.0 RENAME statement to rename a single file. Here is an
immediate mode example:

SEMAME D&, “SEQ.NUM. B4 TO “SE@HUM"

Rename a File (BASIC<3.0)

To rename a single file using BASIC<3.0 use the PRINT3k statement with the
following string variable in its parameter list:

“RENAMEX:NEWNAME = OLDNAME"*
Instead of RENAME gou can have R. X is the drive number holding the diskette on
which the file being renamed is stored. NEWNAME is the new file name; it replaces

OLDNAME, the old file name.
Here is an immediate mode example:

OPEM 15.%8.15 The file on drive O named “"SEQ. NUM. 84" is
SRINT#1S. "RG:SEQOHUM=SEQ.HUM. B4 renamed “"SEQNUM"
CLOSE 15

DELETING FILES

You can delete any file from a diskette. When you delete a file in immediate mode
the CBM computer will always display the prompt message ARE YOUR SURE? You
must respond by typing'**YES”’, and then a carriage return, otherwise the file will not be
deleted. If you delete a file in program mode, no prompt message is displayed.

Scratch a File (BASIC 4.0)

Using BASIC 4.0 you delete a file using the SCRATCH statement. Here is an
immediate mode example:

SCRATCH D&, “REL.NUM,EB4" Delete file RELNUM. B4 on drive DO

Here is the program mode version of the immediate mode example given above:

240 DCLOSE
250 SCRATCH D@, “REL. MUM,E4"

Some versions of BASIC 4.0 have a problem with the SCRATCH statement; it
will not delete files that were not properly closed. You can solve this problem by col-
lecting the diskette, and then scratching the file.

290 PET/CBM Personal Computer Guide

Scratch a File (BASIC<3.0)

Using BASIC<3.0 you can scratch one or more files using a single PRINT#
statement. The PRINT# statement must have the following string variable in its
parameter list:

“"SCRATCHX:FILENAME"
Instead of SCRATCH you can use S. X is the drive number holding the diskette with the

file being scratched. FILENAME is the name of the file being scratched. For a single file
this may be illustrated as follows in immediate mode:

OFEN 15.8,15 Delete file REL. NUM. B4 on drive O
SRINT#15, "S@:REL.MUM.B4"
CLOSE 1S

To delete two or more files you simply add the drive number and file name to the
parameter string. For example, you can modify the statements illustrated above and
delete two files as follows:

OPEN 15,3.,15 Delete file REL. NUM. B4 on drive O and file
PRINT#15, "S@:REL.NUM,E4,1:REL.NUM,E{3" RELNUM.B< 3 on drive 1
CLDSE 15

If you place an asterisk after one or more letters of a file name, then any file
whose name has the letters preceding the asterisk will be deleted. Consider the
following example:

‘ OFEN 15.8.15

PRINT#15. "S@:HUM#"
CLOSE 15

Any file on drive 0 whose name begins with the three letters NUM will be deleted.

If you replace a character in a file name with a question mark, then the name of
the file to be scratched can have any character in that position.

For example the following statements delete a file whose name begins with NUM,
ends with .SEQ, and has four characters in between.

OFEN 15.8.15
FRINT#15, "S@:NUM??27.SEQ"
CLOSE 15

Replace a File (BASIC<3.0)

Although BASIC<3.0 does not allow you to write into an old file, it does allow
the contents of an old file to be replaced. The old file should be opened for a write
operation with an @ sign appearing as the first character in the parameter list string
variable. For example, the MAIL file opened on line 50 below could be an old file:

58 OFEM 1,8.7."@1:MAIL.SEQ,MRITE"

Chapter 6: Peripheral Devices 291

SEQUENTIAL DATA FILES

BASIC 4.0 and BASIC<3.0 both support sequential data files.

A sequential data file is opened either for a read access or for a write access,
never for both. When a new sequential file is opened, the process of opening the file also
creates it. The new sequential file must be opened for a write operation; it cannot be
opened for a read operation. An existing sequential file must be opened for a read opera-
tion; it cannot be opened for a write operation.

SEQUENTIAL FILE FIELD SEPARATORS

Numeric variables in a sequential data file must be terminated by carriage return
characters. String variables may be terminated by comma characters or by carriage
return characters.

We recommend that you use carriage return characters to separate all fields in
sequential data files. Using comma characters to separate string variables offers no
identifiable advantage and can cause unnecessary programming problems.

If all fields are terminated with a carriage return, then rules for writing to sequen-
tial data files are very simple: use the PRINT3 statement with a parameter list which in
a PRINT statement would display variables on the screen as a single vertical column.
The data is read back using INPUT3 or GET3# statements. Using BASIC 4.0 with DOS
2.0, PRINTH# statements automatically add a carriage return character at the end of a
line if the logical file number is 128 or higher. No terminating carriage return character
is output if the file number is 127 or less.

WRITING NUMERIC DATA TO A SEQUENTIAL FILE

Beginning with a very simple example, we will write a program that opens a
sequential file, then writes ten records to the file, with ten numbers in each record, as
follows:

" Record 1: 1 2 3 4 5 6 7 8 9 10
Record 2: 101 102 103 104 105 106 107 108 109 110
Record 3: 201 202 203 204 205 206 207 208 209 210
Record 4: 301 302 303 304 305 306 307 308 309 310
Record 65: 401 402 403 404 405 406 407 408 409 410
etc.

The program will read the records back and display them. Listings for BASIC 4.0
and BASIC<3.0 versions of this program are given below. The programs are named
SEQ.NUM.B4 and SEQ.NUM.B3.

BASIC 4.0 Version

	Chapter6.BMP
	Chapter60001.BMP
	Chapter60002.BMP
	Chapter60003.BMP
	Chapter60004.BMP
	Chapter60005.BMP
	Chapter60006.BMP
	Chapter60007.BMP
	Chapter60008.BMP
	Chapter60009.BMP
	Chapter60010.BMP
	Chapter60011.BMP
	Chapter60012.BMP
	Chapter60013.BMP
	Chapter60014.BMP
	Chapter60015.BMP
	Chapter60016.BMP
	Chapter60017.BMP
	Chapter60018.BMP
	Chapter60019.BMP
	Chapter60020.BMP
	Chapter60021.BMP
	Chapter60022.BMP
	Chapter60023.BMP
	Chapter60024.BMP
	Chapter60025.BMP
	Chapter60026.BMP
	Chapter60027.BMP
	Chapter60028.BMP
	Chapter60029.BMP
	Chapter60030.BMP
	Chapter60031.BMP
	Chapter60032.BMP
	Chapter60033.BMP
	Chapter60034.BMP
	Chapter60035.BMP
	Chapter60036.BMP
	Chapter60037.BMP
	Chapter60038.BMP
	Chapter60039.BMP
	Chapter60040.BMP
	Chapter60041.BMP
	Chapter60042.BMP
	Chapter60043.BMP
	Chapter60044.BMP
	Chapter60045.BMP
	Chapter60046.BMP
	Chapter60047.BMP
	Chapter60048.BMP
	Chapter60049.BMP
	Chapter60050.BMP
	Chapter60051.BMP
	Chapter60052.BMP
	Chapter6a.BMP
	Chapter6a0001.BMP
	Chapter6a0002.BMP
	Chapter6a0003.BMP
	Chapter6a0004.BMP
	Chapter6a0005.BMP
	Chapter6a0006.BMP
	Chapter6a0007.BMP

