292 PET/CBM Personal Computer Guide

ZHTS AND DISEAY -

FECORDT &I DIsELRY IT

TESTDRTA"

BASIC< 3.0 Version
8 REM 'EJGFHP‘ "SER, HUM, BC3"
2@ OFEN 15,3, 15:'REM COMMANT CHANMEL
_NPU*# 5 H? EBf.C2,0%
THEM =RINT A$.B%,.C%.D%

g STIRTACE, SEQ. MW" (REM DATA FILE
pHi 5! C$.0%

(RFNC>E THEN PRINT A$,EF.C3.0¥

EH RECORDE

=

D o

mEM HR;-E TEM FIELDS FER RECORD

FOR F=1 TO 18

PRINTH#1, (R-12%186+F

IMFUT#1S,A%.B$.C$. D¥

26 IF WALCAE)<>@ THEN FRINT AZ.EBF.CF.DF

28 NEXT F

8@ MEXT R

116 CLOSE 1

128 CLOSE 15

60 ®EM MOW READ BACK FILE CONWTENTS AMD DISFLAY IT
216 OPEM 15,5, 15 REM COMMAND CHRMMEL

211 INPUTH#1S.A%$.B$.C%.D%

12 IF WALCA$FH<>A THEN FRINT A$.BF.CF.0F

1% OPEN 1,8,2,"@: TESTDATACS, SER" REM DRTA FILE
15 IMPUT#1S.A$.EF.C5. 0¥

216 IF YALCA$F»><>0 THEM PRINT A$.BF.CF.D%

2@ FOR R=1 TO 18

238 PRIMT "RECORDM:R:

248 REM INFUT CONTEMTS OF MEXT RECORD AMD DISFLAY IT
258 FOR F=1 70 1@

266 INPUTH#I.HN

INFUT#15. A%, B$.C$. D3

2 IF WALCA$» <> THEM FPRINT A$.EF.C%.D%

27 5EIHTHJ

V000 = T L e G G B T

Ol o S

Y

.

Key in the version of the program that will work on your CBM computer, check it
carefully for errors, save the program, then run it. You should get the display shown
below when you run the program.

Chapter 6: Peripheral Devices 293

RECORD 1 1 2 3 4 S & ¥ &
SECORD 2 181 182 185 1687 LA
3 281 282 205 267 216
4 @1 3\ sl a7 216
S 4@l 482 483 404 405 486 487 418
RECORD & S@é1 S@82 S@3 584 SOS See Sav Sia
RECORD 7 681 £62 £82 &Ad4 €05 0 e@7 &1
RECORD & 7@1 782 TeE Té4 FeS Tas 7O7 Tl
RECORD & £81 882 £6% 884 £A5 28 387 i@
RECORD 1@ =81 262 982 284 205 288 547 18

Let us examine program logic.

Statements on lines 10 through 120 create the sequential data file and write ten
records into it. Statements on lines 200 through 320 read the contents of the sequential
data file, record by record, and display data as it is read.

Look at how files have been opened and closed.

In the BASIC 4.0 version sequential data file TESTDATA is opened for a write
operation by the DOPEN=# statement on line 20. Logical file number 1 is used by the
DOPEN# statement. The file is closed on line 110 before being reopened for a read
operation by the DOPEN# statement on line 210. Logical file number 1 is used again by
the DOPENG statement on line 210; reusing the same logical file number for the same
data file is not necessary. Logical file 1 is closed finally on line 310.

The BASIC<3.0 version of the program opens its sequential data file
TESTDATA<3 for a write operation using the OPEN statement on line 24. Logical file
number 1 is used with secondary address 2. The file is closed on line 110 before being
reopened for a write operation by the OPEN statement on line 213. TESTDATA<3 is
finally closed on line 310. The BASIC<3.0 program also opens the command channel
via the OPEN statement on line 20 using logical file number 15, which is optional, and
secondary address 15, which is necessary. It is common practice to use logical file #15
for the command channel in BASIC<3 programs since the secondary address associates
this number with the command channel. The command channel is closed on line 120, it
is reopened on line 210, and closed finally on line 330. The command channel does not
have to be closed and reopened. Lines 120 and 210 could be eliminated. But closing and
reopening the command channel establishes the two halves of the program as separate
modules which can be executed independently.

Notice that the BASIC<3.0 program initializes the diskette on line 23. Strictly
speaking, the diskette should be re-initialized after the command channel is reopened
on line 210 if the two halves of the program are to be treated as separate modules.

The BASIC 4.0 and BASIC<3.0 programs both scratch the data file at the end of
the program (on line 320). If the data file were not scratched you would not be able to
re-execute the program. Try eliminating statement 320 and running the program twice.
On the second execution you will get a FILE ALREADY EXISTS error when the data
file is opened for a write operation (on line 20 in the BASIC 4.0 version and on line 24 in
the BASIC<3.0).

You should scratch temporary data files at the end of a program if the data held
in the file does not need to be saved. If the temporary data file is not scratched it can-
not be reused when the program is re-executed.

Next look at the diskette status logic in the two programs; this logic is missing
from most programs written by programmers who are in a hurry. (BASIC 4.0 and
BASIC<3.0 statements needed to test diskette status were described earlier in this
chapter.)

294 PET/CBM Personal Computer Guide

The BASIC 4.0 program tests diskette status on lines 30, 85, 215, and 265. In each
case the status string variable DS$ is displayed to identify a problem when status is not 0.
Program execution is then stopped.

The BASIC<3.0 program executes the same logic by inputting status via string
variables A$, B$, CS$, and DS$. If the numeric value of A$ is not zero, then the four
variables are displayed. The disk status testing statements can be found on lines 21 and
22, 30 and 31, 85 and 86, 210 and 211, 215 and 216, 265 and 266.

The BASIC 4.0 and BASIC<3.0 programs contain identical statements to write
records to the sequential data file, to read records back, and to display data.

Records are written to the sequential data file by statements on lines 50 through
100. The outer FOR-NEXT loop, indexed by R, counts records; the inner FOR-NEXT
loop, indexed by F, counts fields within records. The PRINT= statement on line 80
writes each field to the sequential data file. Since there is only one variable in the
PRINTHF statement parameter list, a carriage return is forced; you do not have to force
one. Remember, if the PRINT3 statement rewritten as PRINT statements would dis-
play fields in a single vertical column, then the fields will be written correctly to the dis-
kette data file.

Statements on lines 220 through 300 read data back from the sequential file and
display the data. The outer FOR-NEXT loop indexed by R reads records; the PRINT
statement on line 230 starts each record display with the record number. The inner
FOR-NEXT loop indexed for F read fields one at a time using the INPUT3 statement
on line 260. Fields for a single record are displayed on one line by the PRINT statement
on line 270. The PRINT statement on line 290 forces a carriage return after each record
has been displayed.

Although we have described the sequential data file as consisting of ten records
with ten fields in each record, on the diskette surface the sequential file consists of
100 fields separated by carriage return characters. If you were to look at the data as
stored on the diskette surface, you would find nothing to identify the end of one record
or the beginning of the next. Program logic must keep track of records and fields.

To demonstrate the lack of any real file structure on the diskette, change the sec-
ond half of the program so that it assumes 12 records, with 8 fields per record. State-
ments on lines 220 and 250 must change as follows:

226 €OR R=1 TO 12
256 FOR F=1 TO &

Make these changes in your program, then run it. The following display will appear:

RECORD 1 1 7T 8
FECORD 2 0= 8z 189

310 11a 291

4 2a8 = R
= I 5 383 384 95 306 367
RECORD & 481 482 403 404 205
RECORD v 483 418 S61 S8z S8z SEE
RECORD & S@7 S8s S92 518 &@1 £0g
FECORD 2 &05 €88 c87 &858 &893 7az
RECORD 1@ 7@ Va4 785 7Tee 767 718
RECORD 11 &@81 262 £83 264 865 S0s
RECORD 12 283 218 301 2682 263 S8E

Each record begins reading fields wherever the previous record left off. No
attention was paid to the field/record organization used when the file was written.

Chapter 6: Peripheral Devices 295

When a single PRINTH statement writes two or more numeric variables to a
data file, you must force carriage return characters using the CHRS function. Sup-
pose on line 80 we output R, F and the computed expression. The PRINT=# statement
would have to be rewritten as follows:

20 PRINT#1.R,CHR$(132),F, CHR$C13), (R-12#180+F

Usually the carriage return character is assigned to a string variable and the string
variable is used in the PRINTH statement as follows:

15 C#F=CHR$(13D

S0 PRINTHL.R,CH.F,CE. (R—1)%106+F

There are now 30 numbers in each record, not 10. Therefore 30 numbers must be
read and displayed for each record in the second half of the program. A simple (but
inelegant) way of displaying 30 numbers would be to change the FOR statement on line
250, increasing the upper index of F from 10 to 30, as follows:

2568 FOR F=1 TO 2@

Make these changes, then run the program to assure yourself that three numbers
were written out each time the PRINTH statement on line 80 was executed.

WRITING STRING DATA TO A SEQUENTIAL FILE

String variables can be separated using comma characters or carriage return
characters. However, the use of comma character separators serves no useful purpose
when string variables are stored in sequential files. Therefore we will end all sequential
file text variables using carriage return characters.

There is no difference between program logic needed to write string variables or
numeric variables to a sequential file.

We will write a simple mailing list program to illustrate string variables being
stored in a sequential data file. Listings for BASIC 4.0 and BASIC<3.0 versions of this
program are given below, followed by an illustration of program execution.

BASIC 4.0 Version

18 REM FROGEAM “SE@.MAIL., H4"
REM MAILIMG LIST FROGRAM TO ILLUSTRATE DISKETT 4G HAMDL THG
8 DATA " WAME: "." STREET: "." CITY: ";" STATE: "' ZIp: »
DOPEM#1, "SER. MAILDATA" . W
IF D=<>a THEW PRINT DS$: STOR
@ PRINT"D ENTER WAME AWD ADDRESS
FOR I=1 TO 5
REARD F#
FPRIMTFE: INFUT ADECI
MEXT 1
RESTORE
FRINT"ENTER % TO RECORD.H TO RE-EMWTE
GET Y#:IF Y${3"Y" ANMD Y$IO"H" THEM 138
FRIMTY$
A IF Y#="N" THEHW &8
REM WRITE MAME AND ADDRESS TO SEQUEMTIAL FILE
FOR I=1 TO 5
A FRINT#1,A0ECI)
88 MERT 1
1 PRIMT"EMTER % FOR AMOTHER MAME AND ADDRESS.H TO EMI.
2 GET Y#:1IF Y${>"%¥" AND Y$<{>"N" THEN Z2B@
FRINTY#
IF Y#="%" THEHW &8
DCLOSE#1

LILIE

296

4868

PET/CBM Personal Computer Guide

REM DISPLAY MAMES AND ADDRESSES OME AT A TIME
DOPEN#1, "SEQ.MAILDATA"

IF DS<>8 THEN FPRINT DS$:STOP

REM CLEAR SCREEN AND DISFLAY MAME AMD ADDRESS
FPRINT" TInal"

RESTORE

FOR I=1 TO S5

READ F#:FRINT F$;

INPUT#1.AD$

IF DSC@ THEN PRINT DS#:STOP

FRINT ALD$

NEXT I

A PRINTUENTER ¥ FOR ANOTHER MAME AND ADDRESS.M TO EMDY;

GET ¥$:IF Y$OOUY™ AND YHCO'N" THEN 448
IF Y$="y" THEN 35@

DCLOSE#1

SCRATCH D@, "SEQ. MAILIATA"

STOP

BASIC<3.0 Version

REM FROGRAM “SEQ.MAIL.ECR"
REM MAILING LIST PROGRAM TO ILLUSTRATE DISKETTE FILE STRIHG HHHBLIHG
DATA " NAME: “," STREET: "," CITY: “," STATE: ZIP:
OPEN 15.8.15: REN COMMAND CHAMMEL

INFUT#1S.A%. B$.C0%. D¢

IF YALCA%>{>8 THEN FRINT A$.E$.C$.D%

PRIMT#15, "1a"

OFEN 1.8.2, "6 'MAILDATA<S, SEQ, W"

INFUT#15,A$.B%,C%. D%

IF WYALCA$><{>@ THEN FRINT A$.EB$.C$.D%

FRINT"Z] ENTER WAME AMD ADDRESS : Al

FOR I=1 TO S
RERD F¥
FRINTF$; : INPUT AD$CI)

HEXT I

RESTORE

FRINT"ENTER ¥ T0O RECORD.M TO RE-ENTER":

GET ¥#:IF Y${3"y'" AND Y$<3"N" THEN 136

o PRINTY#

IF Y$="N" THEN &@

REM WRITE NAME AND ADDRESS TO SEQUENTIAL FILE
FOR I=1 TO S

FREINT#1,AD$C I

NEXT 1

PRINT"ENTER ¥ FOR AMOTHER MAME AND ADDRESS.N TO END";
GET Y¥:IF Y${>"Y" AND Y$<>"N" THEN 288
PRINTY$

IF Y$="¥" THEN &0

CLOSE 1

REM DISFLAY NAMES AND ADDRESSES OME AT A TIME
OFEN 1.8,2, "8 MAILDATAL2, SEQ"
INFUT#15.A$.B$,C$. D%

IF YALCA$3<>8 THEM FRINT A$.E$.C$.0%

IF DS<>8 THEM FRINT DS$:STOP

REM CLEAR SCREEM AND DISFLAY MAME AND ADDRESS
PRINT" Tele)"

RESTORE

FOR I=1 TO S

FERD F£:PRINT F$.

INFUT#1 . AD$

INFUT#15, A%, B$, C

IF YALC{ASH <@ THEN PRIHT A$.B$.CH. 0§

PRINT AD$

MEXT I

FRIMNT"ENTER % FOR ANOTHER MAME AND ADDRESS.N TO END":
GET Y#:IF Y${>"9" AND Y$<{3"N" THEN 44@

IF Y#="%" THEN 354

CLOSE 1

SCRATCH D@, "SEQLMAILDATA"

STOF

Chapter 6: Peripheral Devices 297

ENTER MAME AMD ADDRESS:

NAME: JO BLOW
STREET: 125 5TH. AYE
CITY: NEW YORK
STATE: NY
ZIF: 18816
ENTER % TO RECORD.MN TO RE-ENTERY
ENTER ¥ FOR AMOTHER MAME AND ADDRESS.N TO ENDY
ENTER WAME AMD ADIRESS:

MAME: FRED SMITH
STREET: 23 ROYAL RD.
CITY: BERKELEY
STATE: CA
ZIF: 94762
ENTER ¥ TO RECORD.MN TO RE-ENTERY
ENTER ¥ FOR AMOTHER HAME AND ADDRESS.H TO ENDN

MAME: JO BLOW
STREET: 125 5TH. AVE
CITY: MNEW YORK
STATE: NY
ZIP: 106106
ENTER ¥ FOR ANOTHER MAME AMD ADDRESS.M TO EMD

NAME: FRED SMITH
STREET: 23 ROYAL RID.

CITY: BERKELEY
STATE: CA

ZIF: 24708

Let us examine program logic.

Statements on lines 40 through 220 input names and addresses from the
keyboard, then output the names and addresses to a sequential data file. Statements on
lines 300 through 460 read names and addresses from the sequential data file and dis-
play them.

The sequential data file is named SEQ.MAILDATA in the BASIC 4.0 program.
This sequential file is opened on line 40 for a write operation; it is closed on line 220.
The file is reopened on line 310 for a read operation, and finally closed on line 460. In
the BASIC<3.0 version of the program the sequential data file is named
MAILDATA<3. The file is opened on line 44 for a write operation,; it is closed on line
220. The file is reopened on line 310 for a read operation, and finally closed on line 460.

Both programs scratch the sequential data file on line 470 so that the program can
be rerun. A real mailing list program would not scratch the file; mailing lists need to be
preserved. Instead, additional names and addresses would be appended to the file.
Appending data to sequential files is described next,

File status is tested in the BASIC 4.0 version of the program by statements on line
50, 330, and 400. In the BASIC<3.0 version file status is tested on lines 41 and 42, 50
and 51, 320 and 321, and 400 and 401. File status statement logic was described earlier
in this chapter.

Notice that SEQ.MAIL.B<3 opens a command channel at the beginning of the
program on line 40. The STOP statement on line 480 is allowed to close the command
channel; this is not good programming practice, but it will work.

Identical statements are used by the BASIC 4.0 and BASIC<3.0 versions of the
mailing list program to read data from the keyboard, write data to the sequential file,
read data from the sequential file, and display data on the screen.

298 PET/CBM Personal Computer Guide

Statements on lines 60 through 140 input names and addresses from the
keyboard. Names and addresses are input as five fields by the FOR-NEXT loop on lines
70 through 100. Notice that the operator’s prompt message is identified by string varia-
ble F$ which is read from the DATA statement on line 30. The five fields of the name
and address are input to string array ADS$(I). The RESTORE statement on line 110
restores the data pointer to select the first string variable of the DATA statement.

Statements on lines 120 through 140 are standard operator dialogue which allow
the operator to re-enter the entire name and address, or record it. This type of dialogue
was described frequently in Chapter 5. Note that very primitive error recovery logic is
provided since our goal is to demonstrate file handling; we are not trying to illustrate
good data entry programming practice.

The name and address is written to the sequential data file by the FOR-NEXT
loop on lines 160 through 180. Since one string variable is output each time the PRINT3
statement on line 170 is executed, a carriage return is forced. We could replace state-
ments on lines 160 through 180 with these two statements:

LEE CF=CHREC1Z)
STH PRINT#1.ADEC1Y, CF, ADFC2), CF, ADS (3D, CF. ADEC4), CF, ADFCS)

The following INPUT3 statement can be used optionally to read the data back:
206 THFLUTH#1,ADSCL), ADEC2) ADEC2) , ADEC4), ADSCS)

Statements on lines 190 through 210 allow the operator to enter another name
and address, or proceed to the display portion of the program.

The FOR-NEXT loop on lines 370 through 420 reads the five fields of each name
and address from the sequential data file, then displays the name and address. Once
again the DATA statement on line 30 is used to provide labels for each field that is dis-
played. On line 380 the READ statement takes the next string value from the DATA
statement on line 30 and assigns it to F$; the PRINT statement then displays this string
variable as a label. The INPUTH statement on line 390 reads the corresponding field
from the sequential data file and the PRINT statement on line 410 displays it.

Operator dialogue on lines 430 through 450 allow the operator to display the next
name and address, or terminate program execution.

Note that we have provided no protection against the operator asking for another
name and address to be displayed when the end of file has been reached. We could solve
this problem by adding the following statements on a new line 405:

485 IF DS=£4 THEW PRINT "EWD OF FILE"® I=S: GOTO 42@

Mixed Sequential Data Files

No special program logic is needed in order to write numeric and string varia-
bles to the same sequential data file. However your program logic must keep track of
field types. If a statement attempts to read a field from a sequential data file using a
variable name of the wrong type, then an error will be reported.

Here is an example of a statement that writes two numeric variables and three
string variables to a sequential data file:

16 DOPEM#1, "DATA". Y

28 CF=CHR$(13
S0 PRINTH#1.P$.CF, 5. CH, 08, CF, Y, C.RE

Chapter 6: Peripheral Devices 299

These five variables would be read back correctly by the following INPUT3 state-
ment:

188 IMPUTH#L.A$C10.AFC22. ASC3D, KO0, K2

The following INPUT3 statement would not execute correctly since the variable
types in its parameter list do not correspond with the variable types recorded in the
sequential data file:

168 IMPUTH#1,AFC1) A2, AFC3D, K010, H2)

There are now 30 numbers in each record, not 10. Therefore 30 numbers must be
read and displayed for each record in the second half of the program. A simple (but
inelegant) way of displaying 30 numbers would be to change the FOR statement on line
250, increasing the upper index of F from 10 to 30, as follows:

258 FOR F=1 TO 2@

Make these changes, then run the program to assure yourself that three numbers
were written out each time the PRINT3 statement on line 80 was executed.

ADDING DATA TO SEQUENTIAL FILES

BASIC 4.0 allows you to add data to an existing sequential file using the
APPEND# and CONCAT statements. The APPEND statement will write fields to the
end of the existing file; the CONCAT statement will concatenate two files.

Appending Data To Sequential Files (BASIC 4.0)

To illustrate the APPEND3 statement, we will modify program
“SEQ.NUM.B4”. The modified program, named “SEQ.NUMAPPEND", is listed
below, with changed statements shaded.

1@ REM PROGRAM “SEG.HUMAFPFEND"
26 DOPEM#1. "TESTDATA". W

3@ IF DS<>8 THEM FRINT DE$:STOF
35 FOR J=1 TO 3

4@ REM WRITE TEN RECORDS

S8 FOR R=1 TO 1@

&8 REM WRITE TEW FIELDS FER RECORD
78 FOR F=1 TO 1@

20 PRINTH#1. (R-1)%188+F#%J

25 IF DS<>@ THEM PRINT DS$:STOP
98 MEXT F

188 HEXT R

116 DCLOSE#! .

288 REM MOW FEAL BACK FILE COWTENTS AMD DISFLAY I
218 DOPEM#1.“TESTDATAR"

215 IF DI=<>@ THEN PRINT DS$:STOP
226 FOR R=1 TO 10T

236 FPRIMT “"RECORD".R.:

24@ REM IMPUT COWTENTS OF MEXT RECORD AWD DISFLAY IT
; FOR F=1 TO 1@

A INPUT#H#1.H

IF DS<»@ THEM FRINT DS#:STOP
PRINTH:

HESXT F

PRINT

NEXT R

3 DCLOSE#!

AFPFEND#1 ., "TESTDATA"

2 MEXT J

SCRATCH D@, "TESTDATAR"

128 STOF

300 PET/CBM Personal Computer Guide

“SEQ.NUMAPPEND" is equivalent to three executions of ““SEQ.NUM.B4”’. On
the first execution 100 numeric fields are written to *“TESTDATA’. On each re-execu-
tion 100 fields are added to sequential data file TESTDATA. Therefore after the second
execution ““TESTDATA” will hold 200 numbers, and after the third execution
“TESTDATA" will hold 300 numbers.

The three executions are enabled by a FOR-NEXT loop which uses the index J.
The FOR statement is on line 35. The NEXT statement is on line 316.

In order to identify appended numbers, the field counter F is multiplied by the
execution counter J on line 80. On line 220 the upper bound for the record counter R
becomes 10 « J, since the number of records will increase by 10 on each re-execution.

You cannot APPEND to a file that does not exist. Therefore you cannot simply
replace the DOPEN# statement on line 20 with an APPEND# statement, and open
“TESTDATA” within the FOR-NEXT loop indexed by J. The DOPEN=# statement on
line 20 creates sequential file “TESTDATA" and opens it for a write operation. Ten
records are written to “TESTDATA™ on the first execution of statements 40 through
315; these ten records are read from the file and displayed. At the end of the first execu-
tion the APPEND3 statement on line 315 reopens TESTDATA for the second execu-
tion of statements on lines 40 through 315. Ten additional records are added to
TESTDATA. Similarly on the third execution of statements on lines 40 through 315,
ten more records are added to TESTDATA, bring the total to 30 records.

Now run the program. On the first execution you will see exactly the same display
that program SEQ.NUM.B4 created. There will be a pause, then on the second execu-
tion 20 records will be displayed; you will be able to identify the second set of ten records
by the fact that the last digit of each number has been doubled. After another short
pause you will see 30 records displayed when the program is executed a third time. You
will be able to differentiate the first, second, and third set of ten records by the last digit
of each number, which is doubled for the second set of ten records, and tripled for the
third set of ten records.

Concatenating Sequential Data Files (BASIC 4.0)

BASIC 4.0 with DOS 2.0 allows you to concatenate files using the CONCAT
statement. Program CONCATEST, listed below, provides a simple demonstration of
file concatenation.

S REM FROGRAM "CONCATEST". DEMOMSTRATES COMCAT STAETEMENT
18 DOPEM#1. "DATA1".W

26 DOPEM#Z. "DATAZ" . W

2 FOR I=1 TO 28

48 PRINTH#1.1

S8 PRINT#Z.I+18

£ NEXT 1
26 DCLOSE
28 DOPEN#1. "DATAL"
168 DOPEN#2, "IATAZ"
118 FRINT"O"
128 FOR 121 To 2@
136 INPUTHILMIPRINT M
148 HEXT
" 145 FRINT
156 FOR I=1 TO 2@
160 INFUTHZ, % PRINT
178 HEXT
175 PRINT
186 DCLOSE
1

]

@ COMCAT “"DATARZ" TO "DATAL"

Chapter 6: Peripheral Devices 301

268 DOPEN#1, "DATAL"
218 FOR I=1 TO 4@

2208 INFUTH1.3%:PRINT

238 NEXT

235 PRINT

248 DCLOSE

258 STOF

This very simple program writes 20 numbers into sequential data files DATA1
and DATAZ2, then concatenates DATA2 to DATAI. Contents of DATA1 and DATA2
are displayed separately, then the contents of DATA] are displayed after concatenation.

The two sequential data files DATA1 and DATA? are opened on lines 10 and 20.
The FOR-NEXT loop on lines 30 through 60 writes 20 numeric fields to each of the two
files. Numbers one through 20 are written to DATA1. Numbers 11 through 31 are writ-
ten to DATAZ2 so that the two numeric sequences can be distinguished, one from the
other.

The two data files are closed by the single DCLOSE statement on line 80 so that
they can be reopened for read accesses by the DOPEN4 statements on lines 90 and 100.
Two FOR-NEXT loops on lines 120 through 140 and 150 through 170 display the con-
tents of DATA1 and DATA2 respectively. The PRINT statements on lines 145 and 175
force carriage returns.

DATAI1 and DATA2 are both closed on line 180, DATA? is concatenated to
DATAI by the CONCAT statement on line 190. DATA1 is then opened so that its con-
tents can be displayed by the FOR-NEXT loop on lines 210 through 230. DATAL is
closed on line 240.

Note that CONCATEST does not scratch DATAI and DATA?2 at the end of the
program. Before re-executing the program you must SCRATCH files DATAI1 and
DATA2 in immediate mode, or you must SCRATCH statements to the end of the pro-
gram as follows:

245 SCRATCH "DATAL":SCRATCH “DATAZ"

It is easy to misuse the CONCAT statement and get into a lot of trouble.

The two concatenated files must both contain data, and must both be closed
when the CONCAT statement is executed.

If you concatenate data to an empty file, the computer will ‘““hang up.’”’ You
must turn power off at the computer, then turn power on again and restart whatever you
were doing.

If you attempt to concatenate files that are open, or improperly closed, the com-
puter may start appending a file to the diskette directory. If this happens, you will see
diskette activity continue for a very long time after the CONCAT statement has been
executed. It is possible to stop the diskette operation by pressing the STOP key at the
keyboard. If you display the directory you will see a lot of garbage appear after the valid
file names. In order to remove this garbage execute the COLLECT statement in
immediate mode.

302 PET/CBM Personal Computer Guide

Appending Data to Sequential Files (BASIC<3.0)

In order to append data to an existing sequential file using BASIC<3.0, you
need two sequential files, which we will arbitrarily name DATA1 and DATA2. Suppose
DATAI contains data. In order to add data to DATA1 you must create a new file
DATA2 using these steps:

If DATAZ2 exists scratch it.
OPEN DATA?2 for a write access.
OPEN DATAI for a read access.

Read records sequentially from DATA1 and write them sequentially to
DATA2.

On detecting the end of the DATAI file, start writing new records to DATA?2.
Close DATAL.

Scratch DATAL.

Rename DATAZ2, giving it the new name DATALI.

Fo B =

00 -1 O Ln

The next time you wish to update the file, repeat the steps described above,
switching DATA1 with DATA2.

END OF FILE

You can test for an end of file by looking for a value of 64 in ST. The following
statement will stop program execution on detecting an end-of-file:

288 IF 5T=64 THEN FRINT “EMND OF FILE":STOF

RELATIVE DATA FILES (BASIC 4.0)

Only BASIC 4.0 supports relative data files.
An open relative file can be read from or written to. However, you cannot read
from an empty relative file; until you have written into the file, you cannot read from it.

RELATIVE FILE FIELD SEPARATORS

Comma and carriage return characters have different meanings as field separators
in relative files; the record length specified in a relative file DOPEN3 statement iden-
tifies the number of characters (bytes) separating carriage return characters. If all
fields are separated using carriage return characters, then the relative file record length
becomes a field length. Remember, BASIC 4.0 PRINT4 statements do not transmit an
automatic carriage return character at the end of a line if the file number is 127 or less.

Relative File Record Length

All numeric fields must be terminated with carriage return characters,
therefore if a relative file holds numeric data, the record length specified for the rela-
tive file is also the field length. The number appearing after the L parameter in the
relative file DOPEN# statement identifies the number of characters (bytes) that will be
set aside for every numeric field in the file.

Chapter 6: Peripheral Devices 303

Since string variables can be terminated by comma characters or carriage
return characters, you can place a number of string variables within a single relative
file record. A name and address, for example, could have the following five fields:

<CR> Name <, >Street <, >City <, >State <, > ZIP <CR >Name <, > Street <, >
—— — . et e e Vi, et
Field 1 Field 2 Field 3 Field 4 Field 5

g
N ~

One relative file record
with five string variables

The record length specified for the relative file in its DOPEN# statement now
applies to all five fields of the name and address record. This is useful since it accommo-
dates records that have one or two very long fields. This may be illustrated as follows:

Number of Characters

Name Street City State ZIP
Field 1 Field 2 Field 3 Field 4 Field 5 Total

Address 1 9 14 16 2 5 46
Address 2 13 12 8 2 5 40
Address 3 12 11 1z 2 5 42
Address 4 17 8 11 2 5 43
Address 5 10 12 13 2 5 42

etc.

If all five fields are stored in a single record, a record length of 50 characters
(bytes) would probably be adequate.

If every string variable field ended with a carriage return, then the record length
specified in the DOPEN4 statement would apply to each field of the name and address.
Every field would have to be long enough to accomodate the longest expected entry in
any one of the five fields. To be safe we would probably select a 20-character (byte) field
length. Now every field, including state and ZIP, will be allocated 20 characters. The
total allocation for the name and address becomes 100 characters (bytes), since there
are five fields with 20 characters per field. Therefore each name and address requires
twice as much disk space as it would need if data were stored five fields per record.

Reading Relative File Records

INPUT4# and GET3 statements can be used to read fields from a relative file.

If commas are used to separate string variables, and INPUT4 statements are
used to read data from the relative file, then each INPUT3# statement must read all
of the variables occurring between two carriage return characters. We will illustrate
this with programming examples on the following pages.

If a relative file has numeric and string variables, selecting a record length
becomes more complicated. You can select a record length that allows a number of
string variables separated by commas to be stored in each record, but numeric fields will
still have to be stored one per long record. And that can prove very costly in terms of
wasted diskette space. There are two solutions to this problem:

1. Select a record length based on the numeric variables. Store string variables
one field per record, breaking up any long strings into smaller pieces.

2. Convert numeric variables into strings using the STRS function, then store a
number of numeric strings in each record.

304 PET/CBM Personal Computer Guide

WRITING NUMERIC DATA TO RELATIVE FILES

To explore numeric relative files we will modify program SEQ.NUM.B4, creating
REL.NUM.B4, which is listed below.
16 REM PROGRAM "SEL. HUM. B
28 DOPEN#1, "RELIATA",L10

J FPRINT DS ST0F

IRITE { FECORDS
s —np R=1 70 18
€8 REM WRITE TEM FIELDS FPER RECORD
78 FOR F=1 TO 1@
28 PRINT#., (R-1)%100+F

=
35 IF DSCA THEM FRINT DS$:STOR
3 v

NEXT R

DCLOSE#!

"f' REM MOW READ BACK FILE COMTENTS AND DISELAY IT
DOPEN#1, "REL IrHTFl";L a

» IF D=@ THEM FPRINT DS$. STOP

FOR R=1 TO 1@

FRIMT "RECORD",R:

o
REM INFUT CONTENTS OF MEXT RECORD AMD DISFLAY IT

THEN FRINT DS$:STOF

oa, "RE_TIRTA"

Load program SEQ.NUM.B4 into memory, then create program REL.NUM.B4
by making appropriate changes to statements on lines 10, 20, and 210. Run program
REL.NUM.B4. If it executes correctly you will get the same display that program
SEQ.NUM.B4 generated. Save program REL.NUM.B4 when it has executed correctly.

Record Length

Note the short record length of ten characters (bytes) specified by the
REL.NUM.B4 program’s DOPEN# statements. Since numeric data is written to
relative file RELDATA, one field is written per record. This is because record length is
always interpreted as the number of characters (bytes) separating carriage return charac-
ters; and every numeric variable must be terminated with a carriage return. Therefore
Just one numeric variable can be stored per record. Ten characters (bytes) is enough
space for one numeric field.

There is no need to close relative file RELDATA on line 110 and then reopen it
on line 210. We do so in order to separate the program into two modules, and examine
how the two halves of the program interact.

Next change the record length in the DOPEN3# statement on line 210 from L10 to
L8. Now re-execute the program. The program will not execute; the following message
will appear:

S&,RECORD MOT FRESENT. 08,00
BREAK IN 215
2ERDY

The wrong record length in the DOPEN# statement on line 210 has caused the
problem. BASIC 4.0 does not allow a relative file to be reopened with the WIong
record length.

Chapter 6: Peripheral Devices 305

WRITING STRING DATA TO RELATIVE FILES

When writing string variables to relative files you can end each variable with a
comma or a carriage return character. If you end each field with a carriage return
character, there will be one string variable field per record. You can include a number
of string variables within a single record by using a comma character to separate
fields within the record. The last field of the record must end with a carriage return
character.

For our first example of writing string variables to a relative file, we will modify
the sequential mailing list program SEQ.MAIL.B4. The modified program generates a
relative file with the five fields of each name and address stored as a single record. This
new program (named REL.MAIL.B4) is listed below; statements that differ from
SEQ.MAIL.B4 are shaded.

18 REM PROGRAM "REL.MAIL.E4"
28 REM MAILIMG LIST PROGRAM TO ILLUSTEATE DISKETTE FILE STRIMG HAWDLIMG
25 #EM FOR RELATIVE FILES
DATH " MAME: "." STREET: "." CITY: M STATE: "3* ZIp: "
"REL.MAILDATA".LSE
7 THEW PRINT DIS#:S5TOP
iT"7 ENTER MAME AWD ADDRESS: MM
—UF 1-’ T0-5
READ F#
PRINTF#: : IMPUT AD$(I)
NEKT I
RESTORE
PRINT"ENTER ¥ TO RECORD.H TGO RE-ENTER".
GET W$:IF Y${o"Y" AND Y$IH"H" THEM 13@
FRINTY$
F 'Y#="H" THEN e@a
REM WRITE WAME AND ADDRESS TO SEQUENTIAL FILE
CHME=CHRF(44)
PRIMT#1.AD$C1) CME ADEC2) i CME ADF (30 CME; AD$C4) CME: ADFCS)
IF D54>8 THEM PRINT DS#:5TOP
PRIMT"ENTER ¥ FOR ANDTHER MAME AND ADDRESS.HN TO END™:
GET ¥#:IF Y${2"Y" AND Y§>"H" THEN 200G
PRINTYS
IF vg="4v" THEN 6@
SE

it s bt s e L 00 =) O N

5]
a
G I
(%]
a
5]
5
@
3
E'I
&
7

]
5]
A
o}
5
a
5}
5]
5}

8 THEW FRINT DS$:STOF
NEH DISPLAY HAMES AND ADDRESSES OME AT A TIME
DOFEN#1. "REL.MAILDATR" ., LSE@
IF DS{>8 THEN FPRINT DS#:STOP
1 REM CLEAR SCREEN AND DISPLAY MAME AMD ADDRESS
PRINT "IINN"
3 RESTORE
INPUT#1 . ADFECL), ADFC2) , ADFC30, ADFC4) , ADFCSD
= IF DS<»B THEN FRINT DS#:STOF
FOR I=1 TO S
READ F#:FRINT F&%;
3 FRINT AD$CIN
4 MEXT T
4 FRINT"ENTER % FOR AMOTHER HAME AWMD ADDRESS.H TO ENDY:
430 GET Y$:IF Y$<3"Y" AND Y$<H"HY THEN 448
458 IF Y#="Y¥" THEN 35@&
468 DCLOSE#1
478 SCEATCH D@, "REL.MAILDATA"
428 STOP

Load program SEQ.MAIL.B4 from diskette, change statements on the shaded
lines, then run the program. If you have entered the program correctly, it will execute
exactly as described for SEQ.MAIL.B4. When program REL.MAIL.B4 is free of errors,
save it.

306 PET/CBM Personal Computer Guide

Let us examine the changed statements in program REL.MAIL.B4.

The DOPEN4 statements on lines 40 and 310 have been changed to specify a
relative file with a 50-character record length and the name REL.MAIL.DATA.

Data is input from the keyboard and displayed on the screen as described for
SEQ.MAIL.B4, but statements that write each name and address to the data file are
completely different. The PRINT# statement on line 170 outputs a single record. CM$
has been assigned the numeric value of the comma character (CHR$(44)) by the
assignment statement on line 160. Note the semicolons separating each variable in the
PRINT# statement parameter list. The combination of semicolons separating
parameters in the PRINTH# statement and CM$ occurring between each field of the
name and address will cause a relative file record to be created as follows:

170 PRINT 31 ADS(H CM$ ADSIZ} CMS AD$I3} CMS AD$I4} CM$ AD$I5]

TSNNSO

JO BLOW ,125 5TH AVE., NEW YORK, NY, 10010

This illustration assumes that AD$(1)="JO BLOW”, AD$(2)=125 5TH AVE.”,
ADS(3)=""NEW YORK”, AD$(4)="NY" and AD$(5)=*:10010".

Note the statements on line 171, which test for diskette status after each record
is written to the relative file. Strictly speaking, program SEQ.MAIL.B4 should have
had statements to test status at this point; for SEQ.MAIL.B4 it would have represented
good programming practice. But it is vitally important after writing a record to a rela-
tive file, since you must check for record overflow. Without the status testing state-
ments on line 171, any name and address that did not fit into the allowed record length
would be stored inaccurately; if your eye were fast you might notice the error indicator
on the diskette drive flash red while the long record is written to the relative file. Other-
wise you would have no idea that an overflow had occurred until a program read data
back from the file, and found one or more fields of the record missing.

To demonstrate the need for the status testing logic on line 171, eliminate this
line, then change the semicolons on line 170 to commas. Now re-execute the program.
If you watch carefully you will see the error indicator at the diskette drive flash red when
records are written to the diskette. When names and addresses are subsequently dis-
played, the first two or three fields of each name and address will be present; remaining
fields will be absent.

What happened?

The commas in the parameter list of the PRINT# statement on line 170 have the
same effect on display fields and relative file fields; each new field is written or displayed
beginning at the next 10th character boundary. The PRINT4 statement on line 170 has
9 variables in its parameter list (you must count the four CMS$ variables). Therefore the
record will require at least 90 characters. More characters will be needed if any of the
five name and address fields has more than ten characters. You can see the effect of
commas by adding the following statement to program REL.MAIL.B4:

FRINT ADFC10, CME, ADFC2) . CME, ADFC3D, CMS, ADE (4, CHE, RD$CS

Each record will be displayed exactly as it will be written to file REL.MAIL.DATA. You
can then count characters for yourself, and see where the name and address gets trun-
cated by a 50 character record length.

Chapter 6: Peripheral Devices 307

Statements that read the name and address back from the relative data file are
shown on lines 365 and 366. Statements that read names and addresses back for pro-
gram SEQ.MAIL.B4 have been removed; hence the absence of lines 390 and 400.

An INPUT3 statement reads one record from a diskette file. This is true for all
INPUTH# statements, reading from any type of diskette file. In other words, each
INPUTH# statement reads data from one carriage return character to the next. In pro-
gram REL.MAIL.B4 there are five fields between each pair of carriage return charac-
ters, therefore the INPUTH statement on line 365 will read five fields each time the
statement is executed. This is true whatever number of variables there may be in the
INPUTH statement parameter list.

The INPUT# statement on line 365 has five string variables in its parameter list.
If any variable in the parameter list were not a string variable, you would get a syntax
error and the program would stop executing.

If there were less than five string variables in the parameter list, some variables at
the end of the relative file records would not be read. You can demonstrate this for your-
self by removing AD$(4) and ADS(S) from the INPUT3 statement on line 365. When
you re-execute the program, names and addresses read from the relative file will have
their first three fields displayed correctly, with nothing in the last two fields.

Next add an additional variable to the INPUT3F statement on line 365 by append-
ing ,AD$(6) to the end of the INPUTH statement. When you execute the program, you
will find that the presence of this additional variable in the INPUT3= statement has no
effect. Unlike sequential files, the additional variable has no data assigned to it, since the
record has run out of fields.

POSITIONING TO RECORDS OF RELATIVE FILE

The RECORD statement allows you to position to any character (byte) of any
record in a relative file. To demonstrate the use of the RECORD3# statement, add the
following line to program REL.NUM.B4:

23 RECORD#1, ((18-RO#¥18+1)

You will see ten records displayed, with 901 through 910 in the first record and 1
through 10 in the last record. This is the exact inverse of the record display given by
REL.NUM.B4.

The record positioning factor is derived as follows:

CC1B-Ro#18+1)
"\-av-" S—p—
| = Add 1 since field numbers
begin with 1.
Number of fields per record
Record number, starts at .
9 (last) when R = 1 and

ends at O (first) when
R =10

Whether a relative record contains numeric or string data has no effect on the way
the RECORD#4# statement works. Prove this to yourself by adding RECORD# state-
ments to the REL.MAIL.B4 program to select names and addresses in any sequence.

308 PET/CBM Personal Computer Guide

Changing Records in a Relative File

Having positioned to any record in a relative file, you can write a single record.
No special programming techniques are required. The same PRINT3 statement that
creates a record can be used to overwrite a record, once you have positioned to the
record.

USING GET# WITH DISKETTE FILES

The GET3# statement reads one character from a diskette data file, just as the
GET statement reads one character from the keyboard buffer. The character read by
the GET3t statement is taken from the 256 byte diskette buffer. Characters are taken
sequentially, beginning with the first character in the buffer. Blanks, punctuation
characters and anything occupying a character position will be read.

When using the GET3# statement to read from sequential files, you must read
characters sequentially, beginning with the first character of the file. However, when
reading from relative files you can use the RECOR D4 statement to select any character
in any record; the GET3# statement will then start reading at the selected character.

Avoid using GET# to read numeric data from disk files. Remember, GET3
returns 0 for a null numeric character. Therefore you cannot distinguish between a true
0 digit and a null character.

We will demonstrate use of the GET# statement by modifying programs
SEQ.MAIL.B4 and REL.MAIL.B4, substituting a GET# statement for the INPUT#
statement that reads back name and address fields. Changes apply also to
SEQ.MAIL.B<3.

Using GET3# with Sequential Files

First we will modify program SEQ.MAIL.B4 substituting GET3 for the INPUT3#
statement on line 390. The GET3 statement follows standard GET statement logic
(which you should understand by now). Here is the new line 390:

2298 GET#1.ADF: IF ADE="" THEM 2538

The PRINT statement on line 410 will now print just one character, we must
therefore add a semicolon to the end of the PRINT statement in order to suppress a car-
riage return.

We must test for a carriage return by adding this extra statement on a new line
415:

415 IF AD$<>CHR$C13> THEW 358

The IF statement on line 415 branches back to the GET3# statement until a car-
riage return is detected. Then the FOR-NEXT loop is allowed to iterate once more.
Since carriage return characters mark the end of each word, the carriage return is dis-
played by the PRINT statement on line 410 before the IF statement on line 415 causes
program logic to move on to the next word.

Load program SEQ.MAIL.B4 into memory. Make the changes described and run
the program. Execution should be identical.

Chapter 6: Peripheral Devices 309

In order to experiment with the GET3 statement, try modifying your program to
detect and change specific characters. For example, you could display a graphics
character wherever a carriage return is detected.

Using GET# with Relative Files

Program REL.MAIL.GET#, listed below, shows program REL.MAIL.B4 modified to
use the GET3 statement; in addition, some characters have been modified so that we
can examine the organization of relative file records.

14 REM PROGRAM “REL.MAIL.GET#"
<8 REM MAILING LIST FROGRAM TO ILLUSTRATE DISKETTE FILE STRING HANDLIMG
25 REM FOR RELATIVE FILES
26 DATA " MAME: “." STREET: “," CITY: "." STRTE: ",° ZIp: *
28 DOFEM#L. "REL.MAILDATA".LSE
5@ IF D<@ THEN PRINT DS$:STOF
5@ PRINT"D) EMTER MAME AMD ADDRESS : A"
78 FOR I=1 TO 5
58 RERD F§
38 FRINTFE, : INFUT AD$CID
188 NEXT
118 RESTORE
i28 FRINTENTER Y TO RECORD.M TO RE-ENTER";
138 GET Y§:IF 98" AND YECO"N" THEN 13@
135 PRIMTY®
188 IF Y$="N" THEW €@
138 REM WRITE MAME AND ADDRESS TO SEMUENTIAL FILE
1608 CME=CHR$(44)
178 PRIMT#1,AD$C1D, CME; ADSC2) CME; ADE <305 CME; ADECAD CHE; ADIECS)
171 IF DE<@ THEN FRINT DS$:STOP
128 PRINT"ENTER Y FOR AMOTHER HAME AND ADDRESS.M TO ENDY;
286 GET Y$:IF Y$O"Y" AND Y$<3N" THEN 208
i PRINTYS
IF Y="¥" THEN &@
DCLOSE#?
IF DS<>@ THEN PRINT DS$:STOP
#EM DISFLAY NAMES AND ADDRESSES ONE AT A TIME
DOPEN#1. "REL.MAILDATA" . LS@
9 IF DSC>@ THEN FRINT DS$:STOR
REM CLEAR SCREEN AND DISFLAY MAME AMD ADDRESS
3 PRINT " Tam"
RESTORE
FOR I=1 TO S
RERD F%:FRINT Fs;
GET#1.AD%: IF ADF="" THEN 359G
S IF IS8 THEN PRIMT DS$:STOF
@8 IF ADE=CHR$C32) THEM ADF="#"
<85 IF ADF=CHRE(44) THEN PRINT AD$; AD$=CHR$C 13D
=18 FRINT AD$;
<13 IF ADECOCHR$C1E) THEN 396
28 NERT
438 PRINT"ENTER ¥ FOR ANOTHER MAME AND ARDDRESS.N TO END";
48 GET Y$:IF Y$3"Y" AND Y$C3"N" THEM 444
438 IF Y#="Y" THEN 354
468 DCLOSE#1
478 SCRATCH D@. “"REL.MAILDATA"
488 STOP

Since the GET# statement reads characters one at a time, we do not need to.worry
about the different punctuation separating fields and records. The GET4 statement will
read punctuation like any other character, and carry on reading. Therefore the INPUT4:
and status test instructions on lines 365 and 366 of program REL.MAIL.B4 have been
removed. A standard GET# statement has been added on line 390; status for this file
access is tested by the IF statement on line 395.

In order to detect space codes, on line 400 space code characters are replaced by
the more visible » character.

310 PET/CBM Personal Computer Guide

Line 405 checks for a comma. Commas are displayed, then replaced with a car-
riage return character.

On line 410 a semicolon has been added to the end of the PRINT statement since
this statement will now display just one character. On line 415 logic branches back for
the next character, unless the carriage return has been detected, at which point the next
field is input. Remember, on line 405 commas have been converted to carriage returns,
therefore on line 415 commas and carriage returns will both cause an advance to the
next field.

Enter program REL.MAIL.B4 and make the modifications shown. Now run the
program. You will find that REL.MAIL.GET# and REL.MAIL.B4 create identical dis-
plays, apart from asterisks appearing instead of blanks. Notice that no asterisks appear
after the zip code. Therefore a carriage return character must appear directly after the
zip code, with unused disk space separating this record from the beginning of the
next.

Using the GET# and RECORD# Statements With Relative Files

The RECORD4 statement will position to any character in any record of a rela-
tive file. To demonstrate the character positioning ability of the RECORD3F state-
ment add the following line to program REL.MAIL.GETH:

265 RECORD#1,2.5

The second half of program REL.MAIL.GET# will now start displaying names
and addresses at the fifth character of the second record. Re-execute the program (mak-
ing sure that you enter at least two names and addresses). You will find that the second
name and address is displayed, beginning at its fifth character.

PROGRAM FILES

CBM computers handle program and data files in totally different ways. Each
has its own set of file handling statements.

Loading and Saving Program Files

Program files are loaded into memory using the LOAD (for BASIC<3.0) or the
DLOAD (for BASIC 4.0) statements.

Program files are written to diskette using the SAVE (for BASIC<3.0) or the
DSAVE (for BASIC 4.0) statements.

Loading and saving programs is described first in Chapter 2.

Accessing Program Files as Data Files

You can OPEN and CLOSE program files as you would data files, and you can
execute GET#, INPUT3#, and PRINT3# statements accessing program files as
though they were data files. But until you have an intimate understanding of CBM
computer system software, you will get results that are highly unpredictable;

Chapter 6: Peripheral Devices 311

moreover you will achieve nothing that could not be done more easily using standard
program file statements and screen editing capabilities.

When using BASIC<3.0, remember that secondary address 0 is used to LOAD
program files into memory, while secondary address 1 is used to SAVE program files on
diskette. By specifying these secondary addresses in OPEN statements you get to access
program files as though they were data.

Backup Program Files

It is imperative that you always have one or more copies of every program file.
Wherever possible, at least one copy of the program file should be held on a different
diskette. Having two copies of the same program file on one diskette serves no purpose
if by some mischance the entire diskette is erased.

Use the BASIC 4.0 COPY statement to copy a single file. Use the COPY or the
BACKUP statement to copy an entire diskette.

With BASIC<3.0 you must copy files and diskettes using a variation of the
PRINTHF statement, as described earlier in this chapter.

Program File Update Sequence

Programs constantly change as you make corrections or improvements. The safest
way of changing a program is to keep a copy of the present version, and the two most
recent versions, generally referred to as the ‘‘father’’ and ‘“‘grandfather.”” When you
change a program follow these steps:

1. LOAD the present ‘‘current” version into memory and make appropriate
changes.

SCRATCH the current grandfather program.
RENAME the father program as the grandfather.
RENAME the current program as the father.
SAVE the new version as the new current program.

ok Wl

JOB QUEUING

Programmed use of the LOAD command allows you to execute very long pro-
grams and to perform various types of job queuing.

Suppose you have an application whose program will not fit in available
memory. Try resolving the problem by splitting the program into two pieces. The two
pieces must be completely independent, except for data which one piece can transmit to
the other via an external data file. This may be illustrated as follows:

Program Program
Part A Part B

Data
File

312

PET/CBM Personal Computer Guide

For this scheme to work, the original program must be divisible into two or more

independent steps.
Let us call the two parts of the program Part A and Part B. The entire program is

loaded, using the following steps:

1

2:
3.
4

Load Part A into memory via an immediate mode LOAD command.
Execute Part A via an immediate mode RUN command.

When Part A finishes, it loads part B.

Part B executes automatically.

Here is a BASIC 4.0 statement which will transfer from Part A to Part B:

€6038 DLOARD D@, "PART B"

Part A must terminate execution by writing out a data file that contains all of the
data needed by Part B. Part B must begin execution by loading the data file which Part A

wrote out.

PROGRAMMING THE LINE PRINTER

Up to this point we have made very little use of the CBM computer system’s line
printer. All we have done is list programs; and that takes no programming effort. But
most programs generate results in the form of printed reports. The format of a report is
very important; reports get used if they are easy to read. A badly formatted report is dis-
carded. Fortunately it is easy to program CBM line printers to generate well formatted

reports.

Two printers are available with CBM computer systems: the Model 2022 and the
Model 2023. Both printers contain their own internal microprocessors, which is why
well formatted printouts are so easy to generate.

The Model 2022 and 2023 printers both print the PET keyboard character set,
not the CBM keyboard character set.

Chapter 6: Peripheral Devices 313

Printers are accessed by opening a logical file specifying physical unit %4, and
a secondary address whose value must range between 0 and 7. If no secondary address
is specified, then 0 is assumed. As summarized in Table 6-4, secondary addresses pro-
vide these printer options:

Print data exactly as received.

Print output to a previously specified format.

Define the number of lines to be printed per page.

Specify the space separating printed lines (Model 2022 Printer only).
Print characters that are not part of the standard character set.
Enable special diagnostic messages to be printed.

SN B0 e b B

Additional formatting can be specified using the special control characters
summarized in Table 6-5.

PRINTING DATA EXACTLY AS RECEIVED

To print data exactly as received you must open a logical file specifying physi-
cal unit #4 and no secondary address, or a secondary address of 0. Then print data
using PRINT# and/or CMD statements.

Printing with the PRINT# Statement

The PRINT# statement outputs data to the printer just as it would to a cassette
or diskette file. For example, to print the word *‘MESSAGE"’, enter the following pro-
gram and run it:

1@ OFEN 2,4

26 PRINT#2, "MESSAGE"
36 CLOSE 2

4@ sTOP

Each time you run this program the single word **“MESSAGE" is printed: then the

following display appears:
EREAK IH 48
REAIY
This display is generated by the STOP statement on line 40.

You cannot use BASIC 4.0 DOPEN# and DCLOSE# statements to access the

line printer. These statements will only work with diskette files.

Printing with the CMD Statement

Instead of using the PRINTH statement you can transmit data to the printer using
the CMD statement. But the CMD statement must be followed by at least one
PRINTH statement before the printer logical file is closed. To demonstrate the use of
the CMD statement, enter and run the following program:

16 OFEN 2.4
26 CMD 2, "MESSAGE"
25 FPRINT#2

38 CLOSE 2
4@ STOP

PET/CBM Personal Computer Guide

314

‘uonjesyioads abed Jad sauy

ay) saBueyd ¢ ssaippe Alepuodes 0} indino Juanbasqns e ijun abed Jad sauy gg uLg 419 (LY L) $HHD uo Buibey
‘Jo8449 Ul §1 ‘Bunuud Jejoeieyd 8siBABs |BOURY SAH 440 + 1dIHS (9% 1) $HHD }40 asianRY
‘s1838| ased-iaddn Bunuud
Apeauje st sejulid ay) 1 108)48 oU sy (Gt |) $HHD '03U0D (£ |) $HHD € Buimojjoy
siayje| ased-1emo| Bunuud si) 1 siepe| eses-seddn Bunuud 0) swinas Jejuud ay) | HsHD (S¥ L) $HHD ases-seddn
‘Aue peaj aul] ou ylm
§ ‘e Joud Bunuudieao ‘pesy eul B Jnoypm wnjas ebewses e seynsexa sejuud ay| INON (kL) $HHD winjas abeuwsen
(s)481001042 (1) $HHD Buipesesd Ag peyioeds Juawadueyua 18)oeIBYD [8oURY 3INON (6Z1) $HHD Bsoueyuaun
‘$18}0B18YD |0JUO0D ||B Julg 3INON (VE) $HHD l8joeleyod ajonp uw
s
‘uo st Buibed J1 wuoy jo doy e ayndex] INOH (61) $HHD 40 Buibey -uh
‘uoieoyoads ased-saddn
ue Jo wnjes abelued e Aq pejeoued si 8SED-10MOT 'S18)38| BsED-Jamo| Bunuud uelg | HSHD (LL) $HHD B85E0-18M07
‘winjas eBellied e AQ Pe||soueD S| pjel} BSIBABY 'S18)}0BIRYD pjay asianel Bunuud ueig SAH 440 181) $HHD uo asianay
NHNL3Y (EL) $HHD wnjey ebeuse)
“18joeseyd siy) Bupeiunooue uo pesj eul pue uinas aBeuues e seyndaxa sejuud 8y |
ANON (OL) $4HD peaq aun
‘aul| 8|Buis e uo pajuud siB)2EIEYD UD J08448 BAIJEINWND B
BARY $10)08JBYD (|) $HHD IUBLWISDUBYUS JBIJRIBYD Saly|Nu uin}a) 8BeLue v ‘auy
Blwes ay} uo pejuud (sjop g Ajjeinul sieloeseys Buuys Juenbesqns Jo yipim ey
2|gNOP ||Im JuBLLIBIELS 4 | NIHJ © JO Is!| 1ejeweled 8y} ul (|) $HHD JO 9OUBINDDO Yoeg INON (L) $4HD 8oueyuy
‘Pele|ep 8q |im Siajoeieyd adeds penjiysun Bus u
'$8p0o2 8oeds peljiys asn isnw noA ajgeuea Buws e ul sepos soeds Buipes) pesui o) 30VdS + 1dIHS (091) $HHD syuejq Buipean aN
@
@
18| Jejeweled JuBWeIERIS 4 INIHd pPiay H
€ Ul B|qeleA ISl By} 4o} 1deOxe (6Z) $HHD AQ pamojo) eq 1snw plely Buuys Asea3 — HSHD (6Z) $HHD Buuys pu3 <
uswwo) Anugz pieoghey apo) 9 uonoduNng 183ulld

| 40 O ssa.ppy Aiepuodeg 0}

pejuLld 1x@] Ul pesn ‘Si8}oEEYD [04U0D) J8JUlld ‘p-9 9|qel

315

Chapter 6: Peripheral Devices

¥= <NO SAH>

pejuud si uoiesyiveds

= — <NO SAH> 1ewso} Y} Ut J10RIRYD BY L Ajlesay)| Je1oelRYD JX8U BY) Julg <NO SAH>| >
spiayy Bunesedes uoyisod spjay 2
1ejoeleyD AJBAe 10} Yue|g BUO BSM| usamjeq seoeds Jajoeley) f
pialy
av vy 3a08v Buys 8y uiyiim pejsnipe uonsod nw
J8v YYvvvy o8y He| a.e sejqeLen Buuig 18)oeIRYD pIBYy m:__zw .m:(v W 3
3Q08Y YYYYYY 3008Y uomisod Jejoeleyo piay Buuys w @
yoea Ajoeds o} y ue asn
-TSLY —6'6666 [A-TA o 19198IBYD HUE|G-UOU }SB| By}
-00€Z $ -665$$$ £z- se pajuud — e Aq payuep! BN 2 oy S -
SLYTLS -66'666% 9SLvTL aJe sJequinu aanebapy ™ Y
OM_MM.E.“I mmmwwwm N.M...wﬂl 18}0BIBYD YUR|G-UOU 1511 ‘18)0RIEYD JBWLIODJ 1511 s
d s1 (- B :
SLPTISH 66'666$S RN se pejuud s (— Jo +) ubig aq jsnw g sequnu paubiis ¢
. . . plely eyl Jo sejoeleyd
St ..—.Nw $ 66 .mwuwa 95L MN_. 15414 Ul JO ‘18}0BIBYD Yue|q JunoLe JEOP B SI 18NN $ W
0EZ 6'666% z -UOU JS1 JO U0 Ul § Julg 3
@
E
asimiayio paynsni Jybu aie siequiny .
Mojeq 88g uesasd yi ‘yuiod |ewioep juiod |ewiseq . W
ay} uo paubije ae siaqWNN w
vel 22z 9sLvel ‘(weseud .
SLVTLO 662222 9SL¥TL J) ui0d (ewroep e 4o 10| Butpes) R i z
0EZO 6227 £Z oy} o) siejoeieyd ||@ Ajoedg 1Pe8] YU 31BIp o1 v
vil 666 9SL VTl ‘ueseud j) juiod ‘passaiddns soez
SLYTL 666666 9sL vl lewrep e jo Jybu Jo/pue 8| Buipea ypm UBIP suswN v i
0EZ 6666 £2 ayy 0} si8j0eseYD ||B Ajloadg . o
Hnsey pejulid 1eWI04 eleq
> wilA)
asn uon e oy CTUN]
sajdwexy "ea

Z SSeippy AJEpuO28S Ul pajulld Siuawalels

18WI04 Ul Pas(‘SISORIBYY BLLIOS JBIULG "G-9 PIqVI

316 PET/CBM Personal Computer Guide

When you run this program the word ‘““‘MESSAGE" will be printed followed by
two carriage returns. The PRINT# statement on line 25 generates the second carriage
return.

Printing With CMD and PRINT Statements

After a CMD statement has been executed, PRINT statements will output data
to the printer rather than the display until the next PRINT= statement is executed.
To demonstrate this, change the printer program as shown below and run it:

18 OPEM 2.4

26 CMD 2

21 PRINT "MESSHGE"
21 PRINTHZ

26 PRINT "MESSAGE"
36 CLOSE 2

4@ STOP

When you run this program, the printer will execute a carriage return, then it will
print the word ‘““MESSAGE™ followed by two carriage returns, then the word
"“MESSAGE” is displayed. The CMD statement on line 20 generates the first carriage
return; the PRINT statement on line 21 causes the word ‘“‘MESSAGE" to be printed by
a carriage return. The PRINT# statement on line 25 generates the additional carriage
return. The PRINT statement on line 26 displays the word *“*“MESSAGE”.

Now remove the PRINT statement on line 21. When you run the program again,
the printer will execute two carriage returns, but the word “MESSAGE"’ is displayed; it
is not printed.

A Comparison of CMD and PRINT3# Statements

To understand what happened we must examine the slight difference between the
effect of a CMD statement, as compared to a PRINT3 statement.

Visualize the printer as a substitute for the display. A single output channel goes
from the CBM computer either to the display, or to the printer. When an OPEN state-
ment is executed specifying physical unit 4, the CBM computer is told that a printer is
present, but the single output channel still selects the display.

When a PRINT3 statement is executed subsequently, the output channel is
deflected from the display to the printer; data in the PRINTH statement parameter list is
transmitted to the printer, then the output channel selects the display again.

When a CMD statement is executed, the output channel is deflected from the dis-
play to the printer, data in the CMD statement parameter list is transmitted to the
printer, but the output channel is left selecting the printer; the display no longer has an
output channel.

When a PRINT statement is executed after a CMD statement, data is printed, not
displayed, because the CMD statement has deflected the output channel from the dis-
play to the printer. But as soon as a PRINTH# statement is executed, the output channel
is deflected back to the display at the end of the PRINT3 statement’s execution. A
PRINT statement executed after the PRINT4 statement will again cause data to be dis-
played.

The printer must be closed, like any other logical file. When the CLOSE state-
ment is executed, the CBM computer is told that the printer is no longer present.

Chapter 6: Peripheral Devices 317

If the output channel is left selecting the printer rather than the display when the
printer is closed, then subsequent PRINT statements will continue to select the printer.
To demonstrate this, enter and run the following program:

1@ OFEN 2.4
28 CMD 2
26 CLOSE 2

25 PRIMT "MESSAGE"
48 STOF

When you run this program you will see the following printout:

MESSAGE
EREAK IN 48
ZEADY
The BREAK and READY lines which were previously displayed are now printed
since the output channel was left selecting the printer.

FORMATTED PRINTER OUTPUT

CBM computer system printers will automatically format output for you.

First you must specify the printer format. You do this by transmitting an
appropriate text string to the printer, using secondary address 2. Text string charac-
ters used to specify printer format are summarized in Table 6-5.

Data which is to be printed using the specified format must be output via sec-
ondary address 1. Data output in this fashion is printed using the most recently
transmitted format specification. If no format has been specified, then data output using
secondary address 1 is printed as transmitted — as it would be if output via secondary
address 0.

To program formatted printer output, OPEN two logical files: one file selects
physical unit 4 with secondary address 2; the other file selects physical unit 4 with
secondary address 1. Then transmit format specifications and data using the
appropriate logical file numbers.

Printing Formatted Numeric Data

We will begin by examining how the printer can format numeric data.

Character positions for each numeric field are specified using the digit 9, the
letter Z, and optionally, a decimal point.

The decimal point, if included, will be printed wherever it appears in the numeric
field. Numbers are aligned on the decimal point.

The digit 9 and the letter Z both specify numeric character positions. However the
letter Z forces all zeros to be printed, whereas the digit 9 prints blanks for leading zeros.
Here are some examples:

Format
Number Specification Result
123.456 123.45
6457 999999.99 6457.00
-1281 128.10
123.456 00123.4
6457 ZZ22229 001234
-128.1 00128.1

318 PET/CBM Personal Computer Guide

A number can be printed with a preceding sign, or a trailing sign.

The letter S appearing at the beginning of the number field specification will
cause a + or — sign to be printed at the beginning of the numeric field.

A minus sign (—) appearing as the last character of the numeric field specifica-
tion will cause negative numbers to be represented by a trailing minus sign; no trail-
ing plus sign is printed.

When a number is to be treated as a $ value then the $ sign can directly precede
the number, or it can be aligned at the beginning of the allotted number field. The
sign can precede the $ sign, it can follow the number, or the number can be unsigned.

For the simplest specification, add a $ character at the beginning of the numeric
field format. This will cause a $ to be printed in the first (leftmost) character position of
the numeric field. If the $ amount is to be printed with a + or — sign preceding the
number, then the format must begin with S$; this will cause a + or — sign, and thena $
character, to be printed in the first two character positions of the numeric field.

You can also print $§ amounts with leading zeros suppressed and a $ character
appearing in front of the first numeric digit. For this specification specify all digit posi-
tions preceding the decimal point using $ characters; add one more $ character to specify
the $ sign. Once again you have the option of putting an S at the beginning of the format
in which case a + or — sign will precede the $ character.

Here are some examples of formats that include a sign and/or $ specification:

Format Printed

Number Specification Result
123.456 123
6457 59999 6457
-1281 -128
123.456 $0123.45
6457 5$9999.99 $6457.00
-128.1 -$0128.10
123.456 $12345
6457 5$$9999.99 $6457.00
-128.1 -128.10
123.456 $123.45
6457 $$5$$.99- $6457.00
-128.1 $128.10-
123.456 $0123.45
6457 $$$$$.99- { $6457.00
-128.1 $0128.10-

Later we will describe how you can substitute any other character or symbol for
the § sign if you are programming in a country that does not use $’s.

In order to demonstrate formatted numeric printout, key in program
NUM.FORM.PRINT as listed below. This program reads eight miscellaneous numbers
from the DATA statement on line 30, then prints them using the format specified by the
PRINT3 statement on line 100. When you runthe program, a single column of num-
bers will be printed, as shown below the listing.

18 REM FPROGRAM "MUM.FORM. PRINT"
268 REM DEHDHQTEHTE FORMATTED HUMERIC FPRINTOUT
28 DRTA 1. J -12286,8, 746582, 12, -456, 2 232456,758,-108, 738, 4723326
78 OFEM 1.4, 1°'REM OUTFUT DATA YIA LOGICAL FILE 1
28 OFEM 2,4,3 FEM COUTPUT DATA FORMATS WIA LOGICAL FILE 2
REM OQUTFUT DATA FORMAT
FRINT#2, "299999 39"

@
116 FOR I=1 TO &

|‘_,

el
10

Chapter 6: Peripheral Devices 319

128 RERD N
1268 PRINTH#1.M
140 HEXT I
158 CLOSE |
155 CLOSE 2
led STOF

18@, 75
SEEEEE, £

Notice that numbers have been aligned on the decimal point. The eighth number will
not fit within the specified numeric field. Asterisks are printed in all digit positions
when a number is too large for the specified format.

Now change the PRINTH statement on line 100, substituting Z’s for the 9’s pre-
ceding the decimal point; re-run the program. Numbers are printed as follows:

aealan, 72
FEEEEE,

Notice that the Z’s cause leading zeros to be printed. The eighth number still overflows
the numeric field and is printed as asterisks. Add one more numeric digit position pre-
ceding the decimal point and the eighth number will be printed. Try it and see it for
yourself.

You cannot mix Z’s and 9’s in the pre-decimal point field specification. If you
do the printer will stop interpreting the field specification at the character change. For
example, change the PRINTH statement on line 100 as follows:

168 PRINT#2, "2222339, 99"
Now run the program. Numbers will be printed as though the field specification
were ‘ZZZZ". Now try changing the PRINT3 statement on line 100 as follows:
190 PRINT#2, 9995222, 93"

When you run the program, numbers are printed as though the specification were
49999,

Numbers have been printed unsigned. In order to print a leading sign, change
the PRINT3 statement on line 100 as follows:

108 PRINT#2, "S3399933, 33"

Now run the program. Numbers are printed with a leading sign and suppressed
leading zeros as follows:

L+ 1+ + 1+

	Chapter6a0008.BMP
	Chapter6a0009.BMP
	Chapter6a0010.BMP
	Chapter6a0011.BMP
	Chapter6a0012.BMP
	Chapter6a0013.BMP
	Chapter6a0014.BMP
	Chapter6a0015.BMP
	Chapter6a0016.BMP
	Chapter6a0017.BMP
	Chapter6a0018.BMP
	Chapter6a0019.BMP
	Chapter6a0020.BMP
	Chapter6a0021.BMP
	Chapter6a0022.BMP
	Chapter6a0023.BMP
	Chapter6a0024.BMP
	Chapter6a0025.BMP
	Chapter6a0026.BMP
	Chapter6a0027.BMP
	Chapter6a0028.BMP
	Chapter6a0029.BMP
	Chapter6a0030.BMP
	Chapter6a0031.BMP
	Chapter6a0032.BMP
	Chapter6a0033.BMP
	Chapter6a0034.BMP
	Chapter6a0035.BMP

