320 PET/CBM Personal Computer Guide

To print a trailing sign, change the PRINT3 statement on line 100 as follows:
180 PRINTH#2, 9393233, 93-"

Now run the program. A minus sign appears after negative numbers; positive
numbers have no sign printed.

Notice that all numbers are truncated after the specified digit has been printed.
The printer does not round up.

Now we will convert numbers to $ amounts by adding a $ sign to the front of the
numeric specification. We will also print a leading sign; the PRINT3 statement on
line 100 must now change as follows:

188 PRINT#Z. "S40999330, 23"

+3
-
+F
+X
-¥
+%
- T
+$472932E, 06

Note that S must precede the $ sign. If a $ precedes the S, unformatted numbers
will be printed.

It is common in financial reports to identify negative $ amounts with a trailing
minus sign. You can generate such a printout by removing the S and replacing it with a
trailing minus sign. Change line 100 as follows:

Now re-run the program; you will get the following printout:

1.75
12200, Ga-
.79

12,88
456, 83-
23456.78
108, 79—
4783326, 00

In any printout of § amounts, the $ sign can be printed directly in front of the
first numeric digit; this requires all character positions preceding the decimal point
to be filled with $ signs. Change 100 as follows:

188 PRINTHZ, "$$$$$58, 29-"

Now re-run the program; you will get the following printout:

$1.7

$12300, Gi-

$.74

§12.00

¥456,83-

$23456, 78

$108, 73—

FEREEE,

What went wrong? The eighth number was printed as asterisks. The problem is
that the new line 100 has seven $ characters preceding the decimal point; it needs 8. You

need one $ for each character position preceding the decimal point, plus an additional
$ to select the $ character printout.

Chapter 6: Peripheral Devices 321

So far we have printed formatted numeric data in a single column. To print multi-
column data, provide a separate numeric format specification for each column using
blank spaces to separate numeric specifications. To illustrate multi-column printing con-
sider the following 3-column output:

2 character numeric field

3 blank characters

11 ch ter numeric field

L 6 blank characters

'7 13 character numeric field
——

g, A
NNBBENNNNNNNNNNNBBBEBENNNNNNNNNNNNN
Ty ——

——
‘—' Column 3. Use format

KAKKKAKKXAKKNK to
print column 2
amount divided by 3

Column 2. Use format
BUXKXXKAX XX to
print a $ amount

Column 1. Use format
XX to print the
line number

The PRINT3 statement on line 100 must change as follows to specify the 3 col-
umn format illustrated above:

106 PRINT#2,"29 $3$$$$$%, 5939- 223933, 939933"

We will change the PRINTH# statement on line 130 to print line number I, N, and
N/3. Here is the new line 130:

128 PRINT#1.1.M.N"3

When you run the program the following printout will be generated:

1 $1.75 o

2 $123290, 6a- 4164,

3 .08 v

4 12,84

5 $456, 85— 1

& F23956., 7]

7 $188, 73~ 333
g F4TEIEZE. 08 FHESEE A EEES

Each column of numbers has been printed according to the specification provided for
that column in the formatting PRINT=# statement. The number of spaces separating
printed columns is equal to the number of spaces separating the column formats in
the PRINT3t statement on line 100.

Printing Formatted Strings

To print formatted strings you use the letter A to identify each string character
position. Use space codes to separate fields, if necessary. The entire format is specified
as a single string variable appearing in the parameter list of a PRINT3statement. As de-
scribed earlier, this PRINT3 statement must specify a logical file number which was
opened to physical unit 4 with secondary address 2.

322 PET/CBM Personal Computer Guide

String variables which are to be printed using the specified format are output using
another PRINTH# statement whose logical file number was opened specifying physical
unit 4 and secondary address 1. String variables in the PRINT# statement parameter
list must be separated by CHR$(29) characters, which may be generated using the
CURSOR RIGHT key within a string. Strings are left-justified within the specified
field; trailing character positions (if any) are filled with blanks. Leading space codes
are truncated.

Here are two PRINT3 statements that print formatted strings:

168 PRINT#X, "ARARAAAAAA RAAARARARRRAAR"
118 PRINTH#Y. MECHRS(290N$

X represents any valid logical file number that has been opened specifying physi-
cal unit 4 with secondary address 2. Y represents any logical file number that has been
opened specifying physical unit 4 with secondary address 1.

The PRINT#X statement specifies 10-character and 12-character string fields sep-
arated by five blank spaces.

The PRINT#Y statement specifies two string variables, M$ and N$, separated by
the required separator CHR$(29). Notice that commas have not been used to separate
elements of the PRINT#Y statement parameter list. You can use commas if you
wish; the following alternate PRINT#Y statement is valid:

FRINTH#Y, M$, CHR$(29) . Mg

You can replace M$§ and N§ with actual string elements, with or without commas
separating the string elements from the CHR$(29) separators. This may be illustrated as
follows:

FRINT#H#Y. "OME" CHRE (290 " TIHO"

To illustrate formatted string printing, we will modify program
NUM.FORM.PRINT to generate STR.FORM.PRINT. The program and sample
run are listed below.

1@ REM PROGRAM "STR.FORM.FRINT"

28 REM DEMONSTRATE FORMATTED STRING FRINTOUT

3@ DATA “MARY PERKIWS"."35 WEST ST."."BERKELEY".'"CALIFORMIA"."347a5"
23 DATA "245-67-231a", "SPONSOR" ., "AKC"

7@ OPEN 1.4,1:REM OUTPUT DATA YIA LOGICAL FILE !

S8 OPEN 2.4,2'REM OUTPUT DATA FORMATS VIA LOGICAL FILE =

30 REM OUTPUT DATA FORMAT

188 FPRIMNTH#Z. "ARARARAAAAA AAARAARARARARR"

185 SPE=CHRE(23)

118 FOR I=1 TO 4

128 REARD M. N$

128 PRINTH#1,M%,SP$.N§

148 MEXT 1

1598 CLOSE !

155 CLOSE 2

1@ STOF
MARY FERKI 35 WEST =T,
EERKELEY CALIFORNIA
24705 245-67-3210
SFOMSOR AKC

The PRINT#X statement appears on line 100 specifying logical file 2, which is
opened on line 80. The PRINT#Y statement appears on line 130 specifying logical file 1,
which is opened on line 70. Instead of using CHR$(29) in the PRINT#1 statement on
line 130, we use SP$, which is equated to CHR$(29) on line 105.

Chapter 6: Peripheral Devices 323

The eight numeric data items which appeared in a single DATA statement in the
NUM.FORM.PRINT program now occupy two DATA statements on lines 30 and 35.
Eight string variables are specifed; they consist of an arbitrary address followed by a
social security number and two code words, shown on line 35 as ““SPONSOR™ and
“AXCT.

Note that the first field (containing the name MARY PERKINS) has been trun-
cated after the 1 of PERKINS. You must add three more A’s to the first field specifica-
tion in order to accommodate the entire name. Notice also that all fields are left justified.
In order to insert leading space codes you cannot use a normal space bar character;
you must use CHR$(160), the upper case space bar character. We can demonstrate
this by adding leading blank characters to one string variable; we will choose AXC.
Change the data statement on line 35 as follows:

35 DATA "3245-67-85910", "SPONSOR", " AXC"

Press space bar twice

Now rerun the program. The printout does not change. The two blank characters
preceding AXC were ignored. Now retype the modified data statement, holding the shift
key down while you enter the two spaces in front of AXC. This time when you run the
program AXC will be shifted two character positions to the right in the printout.

Using string concatenation you can shift string variables to the right within a
string field. This is illustrated by the modification of program STR.FORM.PRINT
shown below, followed by a sample run. .

1@ REM PROGRAM "STR.FORM.PRINT"

20 REM DEMOMSTRATE FORMATTED STRING PRINTOUT

3@ DATA “MARY PERKINS","35S WEST ST.","BERKELEY"."CALIFORNIAR"."347@35"
35 DATA "345-67-231@", "SPONSOR", "ARC"

76 OFEM 1.4,1:REM OUTPUT DATA YIA LOGICAL FILE 1

26 OPEN 2.4,2:REM OUTPUT DATA FORMATS YIA LOGICAL FILE =

2@ REM QUTFUT DATA FORMAT

1088 FRINT#2. "ARARARRAARA FARAARARAAARAAR"
185 SP#=CHR$(23>
186 BL$=" “:REM 12 UPPER CRSE SPACE CODES

118 FOR I=1 TO 4

128 READ M$,N$

125 IF LEM{M$><18 THEM M$=LEFT#(EL#. (1@-LENCM$I) I+ME
126 IF LEMCN$X<12 THEN N$=LEFT$(EL$. (12-LENCH$2) 2+N$
128 PRINT#1.MESPENS

148 NEXT I
158 CLOSE 1
155 CLOSE 2
166 STOP
MARY FPERKI 35 WEST S5T.
BERKELEY CALIFORNIA
24705 345-67-8218@
SPONSOR AXC

In order to right-justify string fields, statements on lines 125 and 126 check for
string variables that are shorter than the specified field width. Lengths for shorter varia-
bles are increased to the field width by adding leading upper-case space characters. Lead-
ing upper-case space characters are taken from string variable BL$, which is defined on
line 106. The number of upper-case space characters is computed as the difference be-
tween the field width and the length of the string variable. This number of characters is
taken from BLS$ using the LEFTS function.

324 PET/CBM Personal Computer Guide

We will now modify program STR.FORM.PRINT to print data using a reasonable
format. For example, the five name and address fields might be printed in a single verti-
cal column (with no truncated characters), while the three additional fields are printed
on a single line below the name and address. Program STR.FORM.PRINTI, listed
below, generates the required printout. A sample run is shown after the listing.

-8 REM FROGRAM "STR.FORM.FRINT1"

.-E." DEMONSTRATE FORMATTED STRIMG PRINTOUT
A "MARY PERKIMS","35 WEST ST, ", "BERKELEY". "CALIFORNIA®, "3a705"
A ,‘4‘ EP—S21E", "SEONSORY , "RKC e

REM OUTFUT DATA YIA |_IJLH. CAL FILE 1

< REM LIUTFI T DRTA FORMATS V1A LOGICAL FILE 2

AAA"

SPEMECTISFENS (S

MECE!

SPONSOR AXC

All eight string variables have been read into the string array M$(I) by the FOR-
NEXT loop on lines 110 through 140, before any string data is printed out. Five fields
are then printed in a single vertical column by the FOR-NEXT loop on lines 160
through 180, using the format specified by the PRINTH statement on line 150. A new
format is then specified by the PRINT# statement on line 190; this new format is used
to print out the last three string variables using the PRINT# statement on line 200.

Printing Mixed Formatted Data

You can mix numeric and string data in formatted printer output. A simple
demonstration of such output is given by program STR.FORM.PRINT2, which is listed
below together with a sample printout.

REM PROGRAM “STR.FORM, PRINTZ"
REN DEMONGTRATE FORMATIED STRING FRINTOUT
DRTA “MARY PERKINS","2S WEST ST. ", "BERKELEY". "CALIFORMIA"."3476S"
DATA "345-67-2310", "SPONSOR" "
"0 OPEM 1.4, 1 FEM OQUTEUT DRTH rL,-. |_Hl_nll AL FILE 1
B3 GFEM 2,42 FEH OUTEI DATA FORMATS VIR LOGICAL FILE 2

Il |TnuT _DATA FOR?

AT

A "33 ARARAARAAARAARA FAARAAARA ARR"
FEIN"&‘ I MECELEPEMFCTISFEMSLT)

Chapter 6: Peripheral Devices 325

CECR Fa G e

SPONSOR AXC

This program is a minor variation of STR.FORM.PRINT1. A line number
numeric followed by three blank spaces has been added to the two PRINTH# statements
on lines 150 and 190. The data output PRINT3 statements on lines 170 and 200 each
print the FOR-NEXT loop index.

A second program, PRINTDATE, is more interesting. It accepts the month, day
and year entered at the keyboard as three separate numeric variables. Each date is
printed with a dash separating month from day and day from year. Program PRINT-
DATE is listed below together with a sample printout for three dates.

14 REM PROGRAM "FRIMTDATE"
26 OPEM 1.4,1:REM OUTFUT DATA VIA LOGICAL FILE 1
3@ OFEN 2.4, 2:REM OUTPUT DATA FORMAT YIA LOGICAL FILE 2

48 FPRINT"I8e"
SE INPUT "EMTER MOMTH:":M
&8 INFUT “EMTER DRY :".D

7@ INPUT "EMTER YERR :":%

50 PRINTHZ. "ARAAA 99ASSAIS"
3 SPE=CHRECZ3)
180 PRINT#1, "DATE: "SP$,M, "="SP$, 0, "~"SP$. ¥
118 PRINT"ANOTHER DATE? ENTER Y FOR YES OR N FOR MO
128 GET YH#:IF YH$="" THEN 128
138 IF YHE="H" THEN PRINT'YN$:STOP
146 IF YN$OUW" THEN 120
156 GOTO 46
IATE E-12-50
DRTE: 12-25-81
IATE: 1- 1-78

Program PRINTDATE makes no validity checks on the numbers entered for
month, day and year since we want to focus attention on printer formatting rather than
good data entry programming practice. But the usefulness of formatted printout is
obvious from the example below.

Including Literals in Formatted Printout

The printer format specification can include literal characters. A literal
character is printed exactly as it appears in the printer format specification; it does
not specify format for data occurring in a subsequent PRINT# statement. A literal
character must be preceded by the REVERSE ON (RVS) character. The character
coming directly after the REVERSE ON is printed normally. In consequence you cannot
print reverse field literal characters.

Program PRINTDATEL1 makes very simple use of literals. A literal dash sepa-
rates month from day and day from year, replacing the string used by program PRINT-
DATE. To create program PRINTDATELI1, load program PRINTDATE from the pre-
vious section, then change the PRINT3 statements on lines 80 and 100 as shown below.
PRINTDATELI and PRINTDATE generate the same display and printout.

326 PET/CBM Personal Computer Guide

16 REM PROGRAM “PRIMTDATEL1"
*3 OFEM 1.4.1:REM OUTPUT DATA YIA LOGICAL FILE 1

2@ OFPEN 2.4,2'REM QUTPUT DRTA FORMAT YIA :ﬂh..qL FILE 2
4@ ERINT"Iem"
S8 IHPUT "ENTEE MOMTH:".™
&8 IWPUT "ENTER DRY "
va 1|1F'!i "EMTER YERE :":¥
o IT#S Moceoe ooy

M OFOR HOY.

E haenign
IF YHECOyn T4En 126

You can create forms, while printing output, by making appropriate use of
literals in printer format statements. However, literals and text must come from the
same character set. Moreover, the printers recognize the PET character sets. When
using CBM computers, therefore, it is very difficult to generate forms using literals.
But a program written on a 2001 computer can be run on a CBM computer in order to
generate forms.

SPECIAL PRINTER CONTROL CHARACTERS

There are a number of special printer control characters which modify printer
output when inserted in data. Printer control characters are summarized in Table 6-4.

Printer control characters are inserted in the data stream transmitted to the
printer via secondary address 0 or 1. Printer control characters are not transmitted as
part of the format specified using secondary address 2.

You can use printer control characters with formatted or unformatted prin-
touts.

The first two entries in Table 6-4, CHR$(29) and CHR$(160), must be used with
formatted printouts (as previously described); they are ignored in unformatted prin-
touts,

Codes listed as optional in Table 6-4 can be used with formatted or unformatted
printouts; their effect is the same in either case.

Enhanced Character Printout

CBM printers normally generate characters using a dot matrix that is seven dots
high and six dots wide. If you include a CHR$(1) character within a data output
PRINT# statements parameter list, all characters following the CHRS$(1) are printed
double-width: using a dot matrix that is seven dots high and 12 dots wide. More than
one CHR$(1) character can appear in a single parameter list. Each CHR$(1) character
takes the previous character width and doubles it. Following two CHRS(1) characters,
therefore, 7 by 24 dot matrices will be used to print characters. After a third CHR$(1)
character, 7 by 48 dot matrices would be used.

In order to demonstrate enchanced printout, load program STR.FORM.PRINT]I
and add the following line:

125 MECII=CHRECL12+M$CID

Chapter 6: Peripheral Devices 327

When you run this modified program, the first printed column (including name,
address and social security number) is printed using double-width characters. The word
SPONSOR uses quadruple-width characters, while the letters AXC are printed using
characters that are eight times normal width. Here is a sample printout:

AEET £ = =

IEE%F?LJEZE;%;F EE%‘j

PEERFEELEY

CALIFORMIA

=T e 55 bt

=S —a T —2S21: = aard=0aR ==l _:

What happened?

Line 125 added an enchancement character to the beginning of each string varia-
ble. Therefore the first string variable on any line is printed double-width, the second
string variable is printed quadruple-width and the third variable is printed using charac-
ters that are eight times standard width.

You do not have to concatenate CHRS$(1) characters to strings. You can insert
CHRS$(1) into the PRINT# statement parameter list, but you must not use commas
to separate CHRS$(1). For example, reload program STR.FORM.PRINTI, and replace
line 200 with these two lines:

135 EF=CHR#$(1)
2068 PRINT#1,E$MFCEISPSESME(TOISPSESMECED

When you run this program, the name and address are printed using standard
character widths. The social security number is printed using double-character widths,
the word SPONSOR is printed using quadruple-character width, while AXC is printed
using characters that are eight times normal width. Here is a sample printout:

MARY PERKINS
35 WEST =T.
EERKELEY

SAaS—E T —SS 1 a Pt o Bt] e

You can print enhanced numeric variables. The numeric variable is included in
the PRINT # statement parameter list, but it must have commas separating it from
other variables. To demonstrate enhanced numeric printout we will again start with
program STR.FORM.PRINTI1. Modify lines 190 through 200 as follows:

196 FRINT#Z. "ARRAARAAARR 59999 ARAAAAA"

195 E$=CHR#(1)

196 H=12345

200 PRINT#1.EM(SISPE, N ESMECT)

The final line printer format has been changed by the PRINTH statement on line
190; two string fields are printed with a numeric field appering between them. The
PRINTH statement on line 200 specifies M$(6) and M$(7) as the two string fields, with
the new numeric variable N between them. N is equated to 12345 on line 196. In the
parameter list of the PRINTH# statement on line 200 notice that the numeric variable N
is separated using commas, but commas are not used to separate string variables.

328 PET/CBM Personal Computer Guide

These syntax rules are very specific and must be observed in order to generate success-
ful mixed, enhanced numeric and string printout. Here is a sample of the printout
generated by STR.FORM.PRINT]1 with lines 190 through 200 modified as listed above:

MARY FPERKIMWS

39 WEST 3T,

EERKELEY

CALIFORMIA

34785

S —E T =215 1=2=45 =R OO = O R

You can cancel character enhancement using the CHR$(129) character. Subse-
quent characters revert to standard size until another CHR$(1) character is encoun-
tered.

Printing Reverse Field Characters

Reverse field characters can be included in a PRINT3 statement parameter list
using the RVS ON and RVS OFF keys. However, you should not print more than five
consecutive lines of reverse field characters; if you do, the printhead will wear out very
quickly.

Printing Control Characters

To print a quote character you must use CHR$(34).

If you print a single CHRS$(34), or any odd number of quote characters in this
fashion, then the printer will subsequently display all control characters via their
graphic representation.

The only time you are likely to do this is when you are listing programs which
include control characters that would not normally be printed.

PAGE FORMAT

Number of Lines per Page

Unless otherwise instructed, CBM printers pay no attention to page length. To
enable paging, transmit the CHR$(147) character to the printer as data. The printer
then assumes a 66-line page; it prints 60 lines, skips six lines, prints another 60 lines,
and so on. Below is the listing for a simple program that turns paging on, then prints a
line number followed by the character string ABCDEFG. If you enter and run this pro-
gram, you will see paged printing in action.

18 REM PROGRAM “FAGING" TESTS FAGING OFTIONS
28 OPEM 1.4:FEM OFEN UNFORMATTED PRINTOUT

28 REM SELECT PAGING

48 FRINT#1,CHR$F(147)

S8 FOR I=1 TO 1e@@

£8 FRIMT#1.I,"ABCDEFG"

7@ MEXT 1

28 CLOSE 1

S8 STOF

Chapter 6: Peripheral Devices 329

You can change the number of lines printed per page once paging has been
enabled. To do this, you output the selected number of lines as numeric data to a logical
file which must be opened specifying physical unit 4 with secondary address 3. The
printer then assumes that the page length equals the number of lines specified, plus six.
The specified number of lines are printed on each page, with six skipped lines between
each page. Program PAGINL2S, listed below, prints 25 lines per page.

16 REM PROGRAM "PAGINGLZS" TESTS PAGING OPTIONS
28 OPEM 1,4:REM OPEN LMFORMATTED FRINTOUT

25 OPEM 3.4.3:REM OFEN FILE TO SELECT HWUMBER OF LIMES FER FAGE
6 REM SELECT PAGING

43 PRINTH#1,CHR$(147)

45 PRIMT#3,25 REM SELECT 25 LINES FER PRGE

S& FOR I=1 TO 160

68 PRIMT#1.1,"ABCDEFG"

T8 MEXT 1

8 CLOSE 1

S5 CLOSE 3

2@ STOF

The PRINTH# statement on line 45 specifies 25 lines per page. Logical file 3 is
opened on line 25.

You can change the number of printed lines per page by outputting a new value to
secondary address 3. The new value goes into effect at the beginning of the next page;
the current page is printed using the old number of lines per page.

Add the following line to program PAGINGL2S:

S5 IF I=23 THEM FRINT#Z.18

Run the program twice. The first time a 25-line page is printed, followed by a number of
ten-line pages. But on the second execution something strange happens; a ten-line page
is printed, followed by a 25-line page, and then a number of ten-line pages. The printer
remembered the previously specified number of lines per page and used it for the first
page of the new run.

Top of Form

While paging is in effect, if you print a CHR$(19) character, the printer will
skip remaining lines on the current page, and position itself at the first print line of
the next page. Printing continues from this new position. This is referred to as a top of
form. If a page does not print to the last line (and this is the rule rather than the excep-
tion), you should end the page by printing a top of form; this will advance the printer to
the next page. You do not have to count remaining lines and skip over them.

Space Between Lines (Model 2022)

The model 2022 printer allows you to change the space between printed lines.
Printers divide each vertical inch into 144 steps. Normally each line is allotted 24 steps.
Thus six lines are printed per vertical inch. The model 2022 line printer aliows you to
change the number of lines that will be printed per vertical inch. To do this, you must
open a logical file specifying physical unit 4 with secondary address 6. Then output a
CHRS function to this logical file number, specifying the new number of steps per line
as the CHRS function’s argument.

330 PET/CBM Personal Computer Guide

Suppose you want to print eight lines per inch; the number of steps per inch then
becomes 144/8, which equals 18. Here are the statements needed to make this change:

18 OPEN 6.4.6
28 PRINT#6&.CHR$(18>

If you have a model 2022 printer, load program PAGINGL2S3, insert these two lines,
then run the program. Lines will be printed with no space in between them: the vertical
width of characters does not change when you increase the number of lines per inch.
Steps are removed (or inserted) between lines. By specifying appropriate steps per line
you can print lines that overlap, or have a lot of space between them.

DEFINING YOUR OWN CHARACTERS

CBM printers allow you to define, or draw, your own printer characters.
All printer characters are generated usinga 7 X 6 dot matrix. To create your own
character draw 7 X 6 dot matrix as follows:

64 4 75 3
32 -
16 [i —— Y
s

4 1 Gl
20100 &l
1 = 1

Each row in the dot matrix is represented by a number, ranging from 1 to 64. The
top row has the value of 64, while the bottom row has the value 1. (Each row value is
double the previous row value.)

Now generate your character by drawing dots in the 7 X 6 matrix. Here is an

English pound character: 84 64
32 32
16
64 .le 8 8 8 8 o
32 ® D 4 4 4 4
16 . 2
Haene 1 1 1 1 %+ 1
2 . 1 13 63 77 77 33
1 LILIE]

B AT

CHRSH }CHRSH 3]CHR$[63ICHH${? ?}CHRSBSF

You must now convert the character into 6 numbers. Each number corresponds
to 1 column of the 7 X 6 matrix and identifies the dots in that column. The first of the 6
numbers represents the left-most column and the last of the 6 numbers represents the

right-most column.
To compute the number for any column, write down row values corresponding to

each existing dot, then sum the row values, as illustrated above.

Next the six numbers must be converted into a six-character string, each
character of the string is.a CHRS function, where the column total becomes the CHRS
function argument. Thus the English pound character becomes a six-character string
where the first character has the value CHR$(1), the second character has the value
CHRS$(13), the third character has the value CHR$(63), the fourth and fifth characters
both have the values CHR$(77), and the sixth character has the value CHRS(33). This
string is output to the printer using a PRINT# statement that specifies a logical file
opened with physical unit 4 and secondary address 5. The printer stores the special
character; it does not print it. Subsequently any PRINT# statement that prints data
specifies the special character using the function CHRS$(254).

Chapter 6: Peripheral Devices 131

The steps needed to print a special character are illustrated by program
POUNDCHAR listed below. This program, when executed, will print a column of ten
English pound signs.

FREARD EF
FE=EF$+CHRE&(EF)

126
146
15@ ST

Let us examine how the pound sign is created and printed.

The data statement on line 30 specifies the number and location of dots in the
character matrix, as illustrated previously.

The FOR-NEXT loop on lines 60 through 90 generate the six-character string
representing the pound sign and assign this string to string variable EP$. Each number
from the data statement is read into numeric variable EP by the READ statement on
line 70; this numeric value is converted into a character, and a character is concatenated
to EPS$ on line 80. The assembled string is output to logical file 5 on line 95. Logical file 5
was opened on line 50 specifying physical unit 4 and secondary address 5. After the
PRINTH# statement on line 95 has been executed, the printer holds one special
character, which it recognizes and prints on encountering a CHR$(254) function in the
data string received from a PRINT= statement. This occurs each time the PRINTH#
statement on line 110 is executed.

Note that the CBM printer can only recognize orfe special character at any time.
You can change the special character by creating a new 6 character string and outputting
this string to the printer via secondary address 5. Although this technique is quite
straightforward, it does not readily lend itself to the indiscriminate use of the many
special characters.

Using Special Characters to Print Non-Dollar Monetary Data

The 8 sign is not much use when printing financial data outside of the USA and
Canada. Some other character must be substituted for the $ sign. This is easily done
using formatted printout in conjunction with special character generation.

Program POUNDVAL, listed below, uses the English pound character which we
just generated to print English financial data with a trailing sign. Two sample printouts
are shown at the end of the listing.

18 REM FROGREAM “POUNDWAL"

28 REM FRINT A HUMERIC YALUE AS ERITISH POUNDS
268 EEM CREATE THE FOUND SIGH
48 DATA 1.132.63,77.77.33

56 OPEM 5.4.5

8 EFg=""

78 FOR I=1 TO &

38 READ EF

96 EP$=EF#+CHR$C(EF)

188 NEXT I

118 PRINTH#S.EFP$

332 PET/CBM Personal Computer Guide

128 OPEMN 1.4,1:REM USE FORMATTED PRINTOUT

138 OPEN 2.4,2

148 REM OUTPUT ENGLISH POUND FRINT FORMAT

158 PRIMTH#Z, "ARARAA A993239, 33-"

168 INPUT "EMTERE AMOUMT:":H

178 PRINT#1. "VALUE="CHR$(22)CHRF(2540CHR$(230 . H
128 CLOSE
1968 CLOSE
2868 CLOSE
218 sTOP

L P

VALUE= £ 1234.56
VALUE= £ 1234,56-

The pound sign is created by statements on lines 40 through 110. These state-
ments have been taken from program POUNDCHAR.

The OPEN statement on lines 120 and 130 open logical files 1 and 2 for formatted
printout. The format is output by the PRINT=# statement on line 150; a six-character
string field if specified, followed by three blank spaces and then a numeric field with pre-
ceding single character string field. The numeric field has two places after the decimal
point and a trailing sign

The INPUT statement on line 160 lets you enter a number which is assigned to
numeric variable N. N is printed by the PRINT # statement on line 170.

Let us examine this PRINT# statement parameter list.

The string *“VALUE=""is printed in the first 6 character string fields. This
character is followed by the mandatory string separator CHR$(29). Three spaces are
printed as required by the printer format. Next comes a single character string field. The
character is CHRS$(254); it is followed by the mandatory CHR$(29) string field termina-
tor. CHR$(254) selects the special character. The pound sign is therefore printed in
front of the numeric field. Numeric variable N is printed in the numeric field.

PRINTER DIAGNOSTIC MESSAGES

If you are having problems with printer output, enable a logical file selecting
physical unit 4 with secondary address 4. This will cause the printer to output
detailed diagnostic messages when it engounters identifiable errors in printout
specifications. You do not have to execute any statements in order to generate error
diagnostics; they are output automatically.

Programs in their final form will not normally use printer diagnostic messages.
These diagnostic messages are used while you are writing a program, in order to find
errors.

You can create a sample diagnostic message by loading program
STR.FORM.PRINTI into memory. Change one of the A format specifications on line
190 to some illegal character such as Q. Then add the following line:

S5 OPEN 4.4.4

When you run the program an error message similar to the one shown below will
be generated.

MARY FERKINS

35 WEST ST.

BERKELEY

CALIFORHA

34785

345-6

AAARARAGARRAAR ARARARA ARA
T

*#RHEAD FORMATHERSR
PONSOR RXC

	Chapter6a0036.BMP
	Chapter6a0037.BMP
	Chapter6a0038.BMP
	Chapter6a0039.BMP
	Chapter6a0040.BMP
	Chapter6a0041.BMP
	Chapter6a0042.BMP
	Chapter6a0043.BMP
	Chapter6a0044.BMP
	Chapter6a0045.BMP
	Chapter6a0046.BMP
	Chapter6a0047.BMP
	Chapter6a0048.BMP

