Chapter 7

System Information

CBM COMPUTER SYSTEM ORGANIZATION

The CBM computer uses a 6502 microprocessor. The display screen, cassette
tape unit, keyboard diskette drives and printer are physical devices that have been
described in Chapter 2. The three external I/O ports are interfaced through the 2K
block of memory-mapped I/0. The organization of the CBM computer system is shown
in Figure 7-1. On 4K/8K PETs, the cassette tape unit connects directly to the I/O block,
and the Cassette Tape Interface is available for connecting a second cassette unit. On
16K/32K PETs the cassette tape unit is connected through the Cassette Tape Interface;
additional tape units, if any are desired, must be interfaced through the IEEE 488 port.
Such tape units would operate under different protocol than standard tape units. The six
ROM, RAM, and 1/0 blocks are allocated from the total 65K bytes of available memory
(1K = 1024).

Memory allocation by 4K blocks is shown in Table 7-1. Each portion of the
memory is described in more detail in the following text.

334 PET/CBM Personal Computer Guide
Display
Screen
14K ROM 8K" RAM
4K Cassette
(BASIC {Storage and fpp ~ ~ - -
and OS) User Pgmi Video RAM Tape Unit 1|
1
4 4K 8K {}1&(32K '
. C?rssene Diskette
It ape Drives
Interface
6502 ‘
Micro- - 2K | eecass | -
processor 1/0 Interface
1
- Paralle! Line
] User Port Printer
1
Expanson 1 T Expansion |
ROM ' RAM Keyboard
[I L
* Varies from 4K RAM with 28K Expansion RAM to 32K RAM with no Expansion RAM
Figure 7-1. PET Block Diagram
Table 7-1. Memory Allocation by 4K Blocks
Start Address
Block M:m:ry Description
e Decimal Hexadecimal
0 RAM 0 0000 Working storage, start of text
1 RAM 4096 1000 Text and variable storage (8K only)
2 - 8192 2000
3 - 12288 3000
a4 —_ 16384 4000
Al
5 - 20480 5000 Expansion RAM
6 - 245786 6000
7 - 28672 7000
8 RAM 32768 8000 Screen Memory (and 1/0O — BASIC 4.0 only}
9 ROM 36864 9000
10 ROM 40860 A000 Expansion ROM
1" ROM 45056 BOOO Start of BASIC 4.0
12 ROM 49152 C000 BASIC (principally statement interpreter)
13 ROM 53248 D000 BASIC {principally math package)
14 ROM 57344 EQ0O Screen Editor (2K)
o] 59392 E800 1:O Memory {2K)
15 ROM 61440 FOO0 Operating System (OS)

Chapter 7: System Information 335

Addresses 0-8191: 8K RAM (Storage and User Program)

The first block of RAM is allocated to working storage, the stack, tape buffers,
and storage of user programs. The amount of active RAM may be 4K (addresses 0-
4095), 8K (addresses 0-8191), 16K (addresses 0-16384), or 32K (addresses 0-32767).
The first 1K allocation (to 1024) is fixed; the larger the memory size, the more space is
available in the user program area.

6}
BASIC
Working
Storage
256
Tape Read
Working
Storage
BASIC
Stack
512
0Ss
Working
Storage
634
Tape Buffer Available for user if no
*1 console tape 1/0
826
Tape Buffer Available for user if no
#2 second cassette
1024
Text
Variables
and Arrays U
ser program area
Strings {
(4K) 4095
(8K) 8191
(16K} 16383
(32K) 32767

Locations 0 through 255 are used by the BASIC interpreter as working storage
locations. This area is detailed in Appendix F.

Locations 256 through 511 are used mainly by the BASIC Stack. A portion of the
area beginning at location 256 and proceeding upward is used by the Tape Read routine
for error correction and by BASIC as an expansion buffer. The stack begins at location
511 and proceeds downward. Storage is allocated dynamically as needed. An OUT OF
MEMORY error occurs if the stack pointer reaches the end of available space in this
area.

336 PET/CBM Personal Computer Guide

Locations 512 through 633 are used by the *‘Operating System’ (OS) as working
storage locations. This area is detailed in Appendix F.

Locations 634 through 825 form a 192-byte tape buffer for the console tape
cassette. Locations 826 through 1023 form a second 192-byte tape buffer for the
optional second cassette unit. User-written assembly language programs can be stored in
tape buffers if there are no tape cassettes, or no second cassette in the system.

Locations 1024 through the end of available RAM are used to store user programs
and variables. Programs begin at location 1024 and are stored upward toward the end of
memory. Variable storage begins after the end of the program. Array storage begins at
the end of variable storage. Strings are stored beginning at the end of memory and work-
ing downward. An OUT OF MEMORY error occurs if an upgoing pointer meets the
downgoing pointer.

Addresses 8192-32767: Expansion RAM 24K
Memory addresses 8192 through 32767 are allocated for expansion of RAM to

32K.
8192
Expansion
RAM 4K
12288
Expansion
RAM
16384
Expansion
RAM
20480
Expansion
RAM
24576
Expansion
RAM
28672
Expansion
RAM
32767

32K of RAM address space is allocated between active RAM and expansion
RAM, as follows:
Active RAM Expansion RAM

4K (0-4095) 28K (4096-32767)
8K (0-8191) 24K (8191-32767)
16K (0-1638)

Chapter 7: System Information 337

Addresses 32768-36863: 4K Video RAM

The first thousand locations of this block, from addresses 32768 through 33767,
are allocated to screen memory. A POKE to any of these locations displays the character
in the appropriate screen position.

32768
TV RAM for
TV RAM } 40-column display
TV RAM for 33792
80-column display TV RAM or
images of
TV RAM
34816
Images of
TV RAM
Used for /0
35840
by BASIC 4.0
Images of
TV RAM
36863

Addresses 36864-49151: Expansion ROM 12K

Memory addresses 36864 through 49151 are allocated for optional expansion of
ROM to 26K.

36864
Expansion aK
ROM
403960
Expansion
ROM
45056
Expansion BASIC 4.0 uses
ROM this expansion ROM
49151

Addresses 49152-65535: 14K ROM and 2K 1/0

Locations 49152 (45056 for BASIC 4.0) through 59391 and locations 61440
through 65535 hold the BASIC interpreter and OS diagnostics. Memory-mapped /0O
locations are from 59392 through 61439,

45056 or 49152
BASIC 10K or 14K
59392
O 2K
61440
0os 4K
65535

Location 65535 is the end of CBM memory.

338 PET/CBM Personal Computer Guide

MEMORY MAP

Detailed memory maps used by different versions of CBM BASIC are shown in
Appendix F. Table F-1 describes the Revision Level 2 ROMs used in the original PET
computers. Table F-2 shows the Revision Level 3 ROMs used in BASIC<3.0. Table
F-3 shows the most recent memory map for BASIC 4.0.

Tables F-1 and F-2 show the memory address in decimal and hexadecimal. You
should use the decimal value as the PEEK or POKE address. Tables F-1 and F-2 also
show sample decimal and hexadecimal equivalent values in memory locations.

With the exception of pointers, these sample values are typical of what you might
see if you PEEKed at the location; these are all byte values, in the range 0 to 255
(0-FF). A pointer is a two-byte address, in the range 0 to 65535 (OFFFF,), that is
stored in the CBM in low-byte, high-byte order. All two-byte locations in the table con-
tain values stored in low-high order. Consider the first such location in the table:

Memory Address Sample Value
Description
Decimal Hexadecimal Decimal Hexadecimal
1-2 0001-0002 826 033A User address jump vector

If you PEEKed at these locations, the 16-bit address would be presented in two parts,
first the low-order byte:

TFEEK (1)
a8

and then the high-order byte:
TPEEK (2)

To convert the two values to the appropriate address, you can convert them sepa-
rately to hexadecimal and then convert the hexadecimal address to decimal:

Low High Address
5810=3Ag 340=034¢ — 033A,5=826,,

Note carefully that the sample value 033 A means that the first memory byte =3A
and the second (higher) memory byte = 03.

Or you can multiply the high-order byte by 256 and add it to the low-order byte.
The following is a PEEK statement that will do this for you:

TPEEKCLY+FEENCZ)
el

Conversely, to convert a 16-bit memory address into two separate bytes for
POKEing (in low-byte, high-byte order), you can convert the decimal value to hex-
adecimal and then convert the separated byte digit pairs to decimal, e.g., to convert the
address 59409:

High Low
59409,,=E811,5 — EB8;5=232;, and 1M,6=171

Chapter 7: System Information 339

Or you can convert using decimal arithmetic by first dividing the address value by 256
and discarding any fractional remainder:
High
59409/256=232.06641=232

Then subtract the high value multiplied by 256 from the original value (59409 in this
case) to get the remainder, which is the low-order byte value:

232.256=59392
Low
69409 - 59392=17

(Of course, if you do the division by longhand, the remainder is directly available.)

For a block of byte locations, only the first byte value is shown in the table.

The column labeled DESCRIPTION in Table F-1 gives a short description of the
location’s use. There are multiple uses for some locations, in which case the primary one
is indicated. While not exhaustive, the table illustrates the overall makeup of the CBM
memory.

Table F-3 compares the BASIC 4.0 memory map with the BASIC 3.0 revision
shown in Table F-2. The DESCRIPTION column provides the location description as
currently used by Commodore; the label column shows the assembly language label cur-
rently assigned to the location by Commodore. The BASIC 4.0 column gives the hex-
adecimal address of each location, while the BASIC 3.0 column gives the equivalent
BASIC 3.0 hexadecimal address. To find any BASIC 4.0 location, first find the hex-
adecimal address given in Table F-2. Find this hexadecimal address in the BASIC 3.0
column of Table F-3 and the comparable BASIC 4.0 hexadecimal address is in the adja-
cent column.

With the exception of the first two entries in Table F-3 which actually represent
memory address 0000, all subsequent 0000 addresses identify entries which do not exist
in one version of BASIC or the other. For example, if you see an address in the BASIC
3.0 column with 0000 in the BASIC 4.0 column, then BASIC 4.0 has no equivalent loca-
tion in its memory map. Conversely, a 0000 address in the BASIC 3.0 column identifies
a new entry in the BASIC 4.0 memory map for which there is no BASIC 3.0 equivalent.

CBM BASIC INTERPRETER

The CBM BASIC interpreter executes a user program by decoding each source
line. Source lines are stored in memory in a compacted form. When you enter a line
from the keyboard, the Line Editor has control, allowing you to edit the line until you
press the RETURN Kkey. Program lines are stored in memory in ascending line number
order. When the RETURN key is pressed, the BASIC interpreter searches memory for
the same line number. If there is one, it replaces the current line with the new line. If
there isn’t one, it searches for the next higher line number. The BASIC interpreter then
inserts the new line into memory and moves the reset of the program up.

Program lines are stored at the beginning of the user program area of memory,
which starts at memory location 1024, Variables are stored in memory above the pro-
gram lines, and arrays are stored above the variables. All three areas begin at lower
addresses and build upwards to higher addresses. Strings are stored beginning at the top
of memory and work downwards. The BASIC interpreter builds all four areas, moving
them as necessary and adjusting pointers for insertions and deletions. Eight pairs of

340 PET/CBM Personal Computer Guide

Pointer Address Typical Values
Start of program — 1024
(40, 41) Start of text ———gt
1025
id BASIC
{62,63) Data statement pointer H Statements 1879
N
(42, 43) Start of variables ——gp— — — — = ~ 1946
Variables
{44, 45) End of variables ———gui— —— — — ~ 2072
Arrays
(46, 47} End of arrays ——fmg— — — — — — 2231
~ '»‘F
(48, 49) End of strings ——fnd— — — — — — 8172 {8K system!
Strings
(50, 51) Top of memory ———dig 8191 (8K system)

Figure 7-2. Principal Pointers In User Program Area

memory locations contain pointers to the division points in the user program area of
memory. These are shown in Figure 7-2. (They are also listed in Appendix F tables).

The formats in which BASIC statements, variables, arrays, and strings are stored
in their respective areas are discussed next.

BASIC STATEMENT STORAGE

BASIC statements are stored in the format shown in Figure 7-3.

Memory location 1024 always contains a zero byte.

The next two bytes contain a pointer to the beginning of the first BASIC state-
ment. The pointer, like all other addresses, is stored in low-byte, high-byte order. The
pointer is a link to the memory address of the next link. A link address of zero denotes
the end of the text; i.e., there are no more links and no more statements. BASIC state-
ments are stored in order of ascending line numbers, even though there are links to the
next statements. Links are used to quickly search through line numbers.

Following the link address is the line number of the statement, stored in low-
byte, high-byte order. Line numbers go from 1 (stored as 1 and 0) to 63999 (stored as
255 and 249).

Chapter 7: System [nformation 341

After the line number, the BASIC statement text begins. Keywords consist of
reserved words (listed in Table 4-4) and operators (listed in Table 4-2). Reserved words
and logical operator keywords are stored in a compressed format. A one-byte token is
used to represent a keyword. All keywords are encoded such that the high-order bit is
set to 1. Other elements of the BASIC text are represented by their stored ASCII code;
these elements include constants, variable and array names, and special symbols other
than operators. All are coded just as they appear in the original BASIC statement. Table
A-1 shows the byte codes for all values from 0 to 255 that may appear in the compressed
BASIC text. Codes are interpreted according to this table except after an odd number of
double quotation marks enclosing a character string; within a character string the stan-
dard ASCII codes prevail, as shown in Table A-4.

Note that the left parenthesis is stored as part of the one-byte token for the func-
tions TAB and SPC, but that the other functions use a separate byte for this symbol. For
example, the following line would be coded as bytes (in decimal) as illustrated below.

| Li:nk l1o| 0 [139'32]181[40[65141l179]53]32|167] 32]153]32]163]88|41| o]

o l (A) < 5 l i l X)
Number

IF INT THEN PRINT TAB

The operators (the symbols +,—,*,/,<,=,> and the words AND, OR, and
NOT) are given keyword codes (high-order bit set) since they ‘‘drive’ the BASIC
interpreter just as reserved words do (e.g., 179 for <). The standard ASCII codes for
these symbols (e.g., 60 for <) appear only in the text of a string.

Spaces in the source line are stored except for the space between the line number
and first keyword. This space is supplied on LISTing when a stored statement is
expanded to its original form. You can conserve memory storage space by eliminating
blanks (but this makes the program harder to read). You can also conserve space by
putting more than one statement on a line, since the five bytes of link, line number,
and 0-end-byte are stored only once.

1024 1025 1026 10271028 1029

E I Link I I Line#l L Compressed BASIC text] E
|
l Link l I Line#] L Compressed BASIC text] E] End of

statement
is flagged
. by zero byte

+ T
[Link_] [Line#] | Compressed BASIC text] m
4 A

olo End of text is indicated by
two link bytes of zero

Figure 7-3. BASIC Statement Storage

342 PET/CBM Personal Computer Guide

Pointer Address Memory Location
{62, 63) DATA statement pointer _-:
Start of program . 1024
(40, 41) Start of text 1025
0
(42, 43) Start of variables 0
0
(44, 45) Start of arrays 170
170
46, AT) f f
(46, 47) Start of free space 170
170
170
170
170
170
(48, 49) End of strings 170
: 170
{50, 51) Top of memory 8191 (8K system)

Figure 7-4. User Program Area on Power-Up

The size of each statement is variable and is terminated by a byte of zero to
indicate the end of the statement. (A value of zero anywhere within the textis stored as
48.) 0-byte flags are used by the BASIC interpreter in executing a program when it goes
through the compressed BASIC text from left to right picking out keywords and per-
forming the indicated operations. A 0-byte indicates the end of the statement; the next
four bytes are the link and the line number of the next statement. In contrast to search-
ing through the text and using 0-byte indicators to locate the next statement, links are
used when searching the statements for their line numbers. Three consecutive bytes of
zero (the last statement’s O-byte followed by two zero link bytes) flag the end of text
when executing the program.

A program is stored onto cassette tape in the same format as for memory
storage (Figure 7-3). Thus. it is basically “dumped’ onto tape in a continuous block,
including link addresses and 0-end-bytes.

The use of tokens in place of keywords is not unigue to the CBM BASIC, but
there is no standard coding from one interpreter to another. Thus, a BASIC source pro-
gram SAVEd on tape by CBM BASIC is not compatible with other BASICs, nor can
BASIC programs generated on other (non-CBM) machines normally be loaded by the
CBM BASIC interpreter.

USER PROGRAM AREA INITIALIZATION

On power-up, the user program area of memory is initialized to **+ " characters
(code 170) except for the first few beginning locations 1024 to 1026. Location 1024 is
zero. the initial link in locations 1025 and 1026 is aiso zero. The pointers into the user
area are initialized as shown in Figure 7-4.

Chapter 7: System Information 343

As lines are entered and edited and new programs loaded, the contents of
memory locations throughout the user program area change. They change, however,
only as necessary for the current program. The user area is not continuously reinitialized
(to **+" or any other code). It is the pointers into the user area that determine the
extent of the current program, if any. The action of a NEW statement is simply to re-
adjust the pointers to the initial values shown in Figure 7-4. A CLR does the same thing
except that it adjusts the variable and array pointers from the end of the program rather
than the start of the program as NEW does. In fact, if you have accidentally cleared the
program or variables, you can reinstate them by ‘‘reading’’ through the user program
area as needed and restoring the pointer values.

DATA FORMATS

Variables

Variables are stored in the Variable Area of user program memory (see Figure
7-2). These are simple (unsubscripted) variables; arrays are stored in a separate area.
The variables may be floating point, integer, or string and are freely intermixed in the
Variable Area. Each variable, regardless of its type, occupies seven bytes of memory.
The first two bytes contain the variable name, and the remaining five bytes further
define the variable. Variables are entered into the variable table as they are encountered
during execution of the user program. A variable that is not in the table is assumed to
have a value of zero for numeric variables or null for a string variable.

Floating Point Variable Format

Byte: 1 2 3 4 5 6 7
T
1st 2':‘d Expo- +: I Fract [
char char nent ! raction
or 0 !

Byte 1 contains the first character of the variable name. Byte 2 contains the
second character of the variable name or, if there is no second character, byte 2 con-
tains a zero. The characters are stored in standard ASCII codes (see Appendix A). For
example, the name A is stored as 65, 0 whereas the name A0 is stored as 65, 48. A float-
ing point variable is denoted by variable names having stored ASCII values of 90 or
below.

Bytes 3 through 7 contain the value of the floating point variable. Byte 3 contains
the exponent in excess 128 format. The exponent determines the magnitude of the
number. In excess 128 format, 128 is added to the true exponent (after normalization of
the significant digits) so that the smallest exponent representation contains all zeros.
The largest exponent representable contains all ones. A true exponent of zero is repre-
sented by an exponent value of 128 (0+128). Excess 128 format eliminates having to
consider a sign in the exponent. Here are some examples:

Actual Exponent Stored Exponent Approximate Value
127 255 1038 (maximum exponent)
34 162 1010
-1 127 107!
-126 2 10-38
-128 o] 10-3% {minimum exponent —

number is zero)

344 PET/CBM Personal Computer Guide

Bytes 4 through 7 contain the significant digits of the number. The number is
normalized such that the binary point is to the immediate left of the first non-zero bi-
nary digit. That is, it is represented as a fraction in the form:

l—_FirSt digit always 1

T XX XeeoX XX
am— ———

T———Remaining 15 binary digits

Binary point

The binary point is always assumed and is not stored. Further, the most signifi-
cant 1 digit is always assumed (since it is always 1) and is not stored either. Its bit
position is used to hold the sign of the number, 0=positive and 1=negative. To nor-
malize a number, the point is moved to the left and the exponent decremented (smaller
numbers), or the point is moved to the right and the exponent incremented (larger
numbers), until the number is a fraction in the form shown above. The number zero is
generally represented by all zeros in bytes 3 through 7, but the fraction may contain
roundoff errors; an exponent of zero is sufficient to make the number zero.

Some examples of floating point number representations stored in the Variable
Area follow. 1E+ 38 has the maximum exponent of 255. This decreases down to zero as
the numbers decrease to zero. Fractional floating point numbers (e.g., 5, .01, .006) have
exponents below 129. For negative numbers, the exponent increases from 0 to 255 as
the absolute value of the numbers increases. In byte 4 the high-order bit is the sign bit.
In this column, decimal numbers less than 127 have bit 7=0 (positive numbers), and
decimal numbers higher than this have bit 7=1 (negative numbers).

Byte: 3 4 5 6 7
Number Exponent +MSB Fraction LSB
1E+38 255 22 118 153 83
1E+10 162 21 2 249 0
1000 138 122 0 (¢} 0
1 129 0 0 00
0.01 122 35 215 10 62
1€-4 115 81 183 23 90
1€ 62 60 229 8 101
1E-39 0 32 o] o] 0
0 0 0 o} 0 o}
-1 129 128 0o 0 0
-1000 138 250 0 0 0
-1E+10 162 149 2 249 o]
-1E+38 255 150 118 153 83

The following short program allows you to examine floating point representa-
tions for any numbers. Line 10 inputs a number that you enter from the keyboard, ter-
minating with a RETURN key. Line 20 points to the beginning of variables +2 to go
past the two-byte variable name. Line 30 prints the number that was input, followed by
the five bytes PEEKed from the variable table. The program is continuous; to end, enter
a null line (RETURN key only).

18 INPUT A
20 X=PEEK(42)#256+PEEK (42)+2

38 PRINT A:"="PEEK(X),PEEK(X+1),;PEEK(X+2); PEEK(X+3)PEEK(X+4)
48 GOTO 1@

Chapter 7: System Information 345

Integer Variable Format

Byte 1 2 3 4 5 6 7
1st 2nd Value
char | 135 | e v . 0 0 0
+128 |or 128 | ™9 I o

Byte 1 contains the first character of the variable name shifted (+128). Byte 2
contains the second character of the variable name shifted (+128), or if there is no
second character, byte 2 contains 128. An integer variable is denoted by variable
names having ASCII values of 176 or higher. The % notation is dropped from the
variable name. Bytes 3 and 4 contain the value of the integer in high-byte, low-byte
order. (Note that this value is not an address and does not conform to the reverse stan-
dard for pointers). The value is stored in twos complement format so that the high-
order bit (bit 7 of byte 3) represents the sign, 0=positive, and |=negative. The
remaining three bytes are not used and are set to zero.

The following are some examples of integer representations stored in the Variable
Area. You can use the same program as above to look at integer number representations
after changing A to A% in lines 10 and 30.

Byte 3 4
Number
32767 127 255 (256+127+255=32767)
32766 127 254
14000 54 176
256 1 0
255 0 255
1 0 1
-1 255 255 {FFF gl+1=1
-2 255 254
-32766 128 2
-32767 1281 1

String Variable Format

Byte: 1 2 3 4 5 [§] 7
2nd T
1st char | Char Pointer o o
char +128] count i
or 128 High Low

Byte 1 contains the first character of the variable name. Byte 2 contains the
second character of the variable name shifted (+128), or if there is no second
character, the second byte contains 128. This combination of ASCII ranges denotes a
string variable entry. The $ notation is dropped from the variable name. Byte 3 contains
a count of the number of characters in the string (1 to 255). This is the value fetched
for the LEN function. Bytes 4 and 5 contain a pointer to the beginning of the string
itself, stored elsewhere in memory. This pointer is in the standard 6502 low-byte,
high-byte order. The remaining two bytes are not used and are set to zero.

String storage is optimized by using the copy of the string already in memory if
there is one. If there is not, a string is created and stored in the String Area in upper
memory. A few examples are given below.

346 PET/CBM Personal Computer Guide

Constants

Constants are stored in the BASIC statement itself. They are not placed into a sep-
arate area of memory, and they are not stored in the Variable Area. Floating point,
integer and string constants are all stored as ASCII character source codes, as de-
scribed previously under BASIC Statement Storage. For example, the line:

16 PRINT "HI!"
is stored entirely in the BASIC Statement Area, in the form:

[Li\‘k I10| 0 l153]32l3‘4l72173l331314l OI

H |

Line
number

—Z—37v

whereas the statement
10 A$="HI!":PRINT A%

is stored in two areas. The original statement is stored in the BASIC Statement Area:

[Te) [yt < o~
Memory ~ o <
Address e ©c @ =4
l Link llo[0 IGS]36I178]34|72I73[33]34]58]153[32[65]36[o]
— = A $ = “ H I 1 v : P A S
Line R
number

|
N
T

The illustrated memory addresses assume that this is the first statement in program
memory, therefore it is stored at the beginning of the user program area (location 1025).
In addition, when this statement is executed the following entry is made in the Variable
Area:

Byte: 1 2 3 4 5 6 7

(42, 43)——[65[1 28[3] 9 [4 l 0 [0 I (String)

— —

A Length
|of string
No2nd 4.256+9
char =1033

The string in the BASIC Statement Area is pointed to (beginning at memory location
1033 in this program) rather than storing a copy of it in upper memory. However, when
you create a new string, as in:

28 EB$#=A%$+"HO"
the BASIC Program Area entry is:

r?i_r;rzo]o|ssl36|178]65]36117ol34|72]79[341oJ
“E;:B$=A$+“HO"
number

_~apter 7: System Information 347

:nd the entry in the Variable Area is:

Byte: 1 2 3 4 5 6 7
[aelnal 5]251] 31] 0 l 0 l-——(42, 43)

B Length
of string
No 31.256+251=

2nd 8187
char

This time the pointer addresses a location in upper memory (8187 in this program) that
contains the string:

8188 8180
8187 ¢ 8189 ¢ 8191

|72]73l33|72l79]
H t ! H O

The address 8187 assumes an 8K memory. The largest available address is then 8191.

ARRAY STORAGE FORMAT

Arrays are stored in the Array Area of user program memory (see Figure 7-2).
Arrays may be floating point, integer, or string, and are stored in the order in which they
are created by the program. The type of array is distinguished by the way in which the
two-character array name is stored. Array names and variable names are encoded in
exactly the same way. An array is stored with a header, followed by the elements of the
array, as follows:

Header Element O Element 1 Element n

Elements are stored in reverse order for strings.

Array Header

All types of arrays have the same header format. The header contains seven
bytes, plus two additional bytes for each array dimension beyond 1.

Byte: 1 2 3 a4 5 6 7 (Bytes as needed)
Last “Next-todast | First]
1st 2nd Total bytes g‘irc:\.:r:- dimension size | dimension size ... dimenslnon size l
char char Low l High ! l . T
sions Low High _l;ow_l_Hngh—l_Lov:/__I _ngh I

Floating point array elements are encoded using floating point variable format,
therefore each floating point array element occupies five bytes. But array integers
require just four bytes, while array strings require five bytes: in each case the zero bytes
are discarded.

In the array header, bytes 1 and 2 contain the array name. Bytes 3 and 4 con-
tain a count of the number of memory locations that the array occupies. For example,

348 PET/CBM Personal Computer Guide

A(0) would occupy 12 bytes: 7 for the header and 5 for the single element. The byte
count is stored in low-byte, high-byte order. Byte 5 contains a count of the number of
dimensions in the array. Thus, A(5) has one dimension (byte 5=1) and A(10,10,2)
has three dimensions (byte 5=3). For a one-dimensional array (or vector), bytes 6 and
7 contain the dimension size — this is the number specified between parentheses in the
DIM statement + 1. For example, the dimension size = 6] for DIM A(60), = 101 for
DIM A(100), etc. If the array does not appear in a DIM statement, the dimension size
defaults to 11. The dimension size is stored in low-byte, high-byte order. For a multi-
ple dimension array, the header contains additional bytes in which additional dimen-
sion sizes are stored. Two additional bytes are used for each additional dimension.
The dimension sizes are stored in reverse order as compared to the order in which
they appear in the DIM statement. For example, for DIM A(10,5) the dimension sizes
are stored as bytes 6,7=6 and bytes 8,9=11. For DIM X (2,1,3) the dimension sizes are
stored as bytes 6,7=4, bytes 8,9=2 and bytes 10,11=3.

Array element formats for each type of array are shown below. Formats are as
described for variables, with bytes deleted.

Byte: 1 2 3 4 5
T
Floating Point £ ¢ et I F It’ I
Array xponen + raction
|
Byte 1 2
Integer Value

Array 1 high Low

Byte: 1 2 3

String | Char Pointer

Array | count High Low

The size of the header may be calculated as five bytes plus twice the number of
dimensions in the array. Memory occupied by array elements may be calculated as the
number of bytes per element (5 for floating point, 2 for integer, 3 for string) times the
number of elements (the dimensions multiplied together + 1). The total size of the
array, header plus elements, is stored in byte 4 of the array header.

The following program examines Array Area entries:

1@ DIM ACSY.BRC2,2). 060108 REM SAMPLE ARRAYS

20 FOR I1=0 TO S: ACI)=I: MNEXT I

38 FOR I=@ T0 2: FOR J=@ TO 2 BX(J,I>=100+3%I+J: NEXT I,1

46 FOR I=8 T0 18: C$(I>=CHR$(ASCC("AR">+I): NEXT 1

56 X=PEEK(45)%256+PEEK(44): REM POINT TO ARRAY AREF

60 Y=PEEK(47)¥256+PEEK(46): REM END OF ARRAYS

7@ FOR I=X TD ¥

8@ PRINT I,PEEK(I>

98 GET D$: IF Ds$="" GOTO 99

180 NEXT 1
Each of the three types of array is dimensioned. Line 20 fills the floating point array A
with the numbers 0 through 5. Line 30 fills the integer array C$ with the single strings A

through K. Lines 50 and 60 fetch the pointers to the end of the Variable Area and the

Chapter 7: System Information 349

end of the Array Area. The display stops at each memory location; to print the next loca-
tion, press any key (e.g., the RETURN key). You will need to locate the beginning of
the arrays by the sequence for the first array shown below (the pointer addresses the end
variable). The memory locations will appear as shown below.

12 3 4 5 6 7

Ll Lol e e[[o]

Al0) = 0 A{1) =1
No 2nd No of
char dimensions
Array size = No. of

37 bytes elements

F30lolQIO‘Ol130|6410]0|0]131l0|010[0l131l$2]010l0]

Af2) = 2 Af3) =3 Ald) = 4 A(B) =5

1 2 3 4 5 6 7 8 9

ArraBy%A:\zreza)[1g4‘1zalz7] l] 0 l:lil 3o l1ool [ro1f o]102] 0 M

B No Noof B%(0,0) B%{1,0) B%{2,0) B%{0,1)
+128 2nd dimensions =100 =10t =102 =103
char
Array Last First

size = dimension dimension
27 bytes size = 3 size = 3

I 0 |1o4] 0]105] 0 I1os] 01107] 0|108]
B%(1.1) B%(2.1) B%(0,2) B%(1,2) B%(2,2)
=104 =105 =106 =107 =108

Anaésﬁ(«;%a)lmluslwl Ol 1] 0 I”l 1]zsslml 1 Izs4l31| 1 I253]31| 1]252]31]

pe——— —— pom——
C No No. of C$(10) C$(9) C$(8) C$(7)
2nd dimensions
char
Array size = No. of 256431

40 bytes elements +255=8191

[1 12511311 12501 311 1249131L 1248131] }247] 311 1246] 311 12451 31]
csi(6) C$(5) C$(4) C$(3) C$(2) Cs(1) cs$O |

256- 31+245
=8181

8182 8184 8186 8188 8190
8181 | 8183 | 8185 | 8187 | 8189 { 8191

Sting r5]66167T68169| 70{71] 72]731741 75]

A B C D F G H |

350 PET/CBM Personal Computer Guide

CHARACTER REPRESENTATION

ASCII (American Standard Code for Information Interchange) is a widely used
code for representing character data. It is normally a 7-bit code, allowing 128 charac-
ters (7F =128) to be represented. The standard ASCII 7-bit character set is shown
in Table A-2 in Appendix A. Bits are numbered from 0 (least significant bit) to 6 (most
significant bit):

7 6 5 4 3 2 1 0 =s—— Bit number

T T (7-bit ASCH)
L L] IASICIIcode l]
i

The first 32 codes are reserved for non-printable control characters, intended for
message formatting and print format controf.

CBM computers store characters in an extended, 8-bit version of ASCII for-
mat. With eight bits normally available, rather than just seven, up to 256 characters can
be represented. Within compressed BASIC text, the 8-bit character codes are
interpreted as shown in Table A-1, where bit 8=1 signifies a keyword. Elsewhere in
main memory the 8-bit character codes are interpreted as shown in Table A-4.

The screen memory, occupying memory locations 32768 through 33767, uses a
different ASCII character representation than main memory. It is a 7-bit code as
shown in Table A-3. The eighth bit is a normal/reverse field indicator. Note that the
characters are arranged such that bits 0 through 5 represent one key on the PET
keyboard, with bit 6=0 being the unshifted character and bit 6=1 being the shifted
character of the same key.

7 6 5 4 3 2 1 O -s—Bitnumber

[[[[] | | [Je—rtscreencose

N s’

t

Key code

O = unshifted character
1 = shifted character

= normal field
= reverse field

0
1
The complete character set for screen memcry is shown in Table A- 4 under the PEEK/
POKE column.

The screen memory ASCII code may be derived from the CBM ASCII code by
moving bit 7 of the main code into bit 6 and dropping the previous value of bit 6. The
examples below illustrate the four cases of a 0 or | in bit 7 going into a 0 or 1 in bit 6:

Main Memory Screen Memory

Character Representation Representation
01000001 00000001
Shifted A { ’) 11000001 01000001
1 00110001 00110001
Shifted 1 { =) 10110001 01110001

When PRINTing to the screen, the CBM computer automatically makes the
conversion to screen codes. Only when you are PEEKing and POKEing in screen
memory do you need to be concerned with character set differences.

< napter 7: System Information 351

Screen memory can be looked upon as having an additional bit that selects the
:iternate character set in response to a POKE 59468,14. POKE 59468.12 restores the
standard set. The alternate set is also shown in Table A-4.

ASSEMBLY LANGUAGE PROGRAMMING

CBM BASIC can execute small programs written in 6502 assembly language. As-
sembly language programs execute faster and require less memory space for a given
“unction than the equivalent BASIC program. You might want to write an assembly
language program to be run on the CBM computer if:

1. The operation is not fast enough using a BASIC program.

2. The operation cannot be implemented in CBM BASIC.

3. The operation takes up too much memory space as a BASIC program.
4.

Assembly language lends itself better to the task than the BASIC language.
Some 1/0 operations probably fall into this category.

An assembly language program can be loaded into memory by POKEing the
decimal values of the 6502 instructions that make up the program. There is no area
set aside for use by assembly language programs. You have to make space, either by
taking otherwise unused locations or by setting up a space in the user program area of
memory. The following are possible locations:

1. Cassette Buffers. If you do not have a second cassette unit, then the 192-byte
tape buffer for cassette #2 can be used to store an assembly language pro-
gram. The buffer #2 extents are locations 826 to 1017 (see Appendix F). In
addition, if the console cassette unit is not going to be used while the assembly
language program is operating, then the other 192-byte tape buffer for
cassette #1, at memory locations 634-825, is also available. No LOADs,
SAVEs or other tape I/0 can be performed accessing the particular cassette
while its buffer is used by an assembly language program.

2. Top of Memory. Memory locations 52 and 53 contain the pointer to the top of
memory. On 8K PETs this value is 8192. You can temporarily set the top-of-
memory pointer to a lower address, thereby reserving a number of bytes from
the new pointer value to the actual top of memory for storage of an assembly
language program. To set the pointer, say, down 1000 bytes, you will need to
store the value 7192 (8192 —1000) converted into low address, high address
order:

High Low
7192,4=1C18,5— 1C;4=28,9 and 18,g=244

So 24 is 1o be stored at location 52 (low byte), and 28 is to be stored at
location 53 (high byte). The following instructions can be used:
18 AL=PEEK(S52) :AH=PEEK(S3> :REM SAVE CURRENT POINTER
2@ POKE S2.24:POKE 53,28:REM TOF OF CORE = 7192

iBB POKE S2.AL:POKE 53.AH:REM RESTORE POINTER
118 END

352 PET/CBM Personal Computer Guide

3. You may find usable locations in the BASIC Statement Area. You may
create a block of dummy DATA statements and use those locations. There
are generally a few locations free between the end of the program and the
beginning of the Variable Area. But you must be very careful that your assem-
bly language program and the BASIC interpreter do not get in each other’s
way.

The CBM BASIC interpreter can be used to load an assembly language pro-
gram into the selected area of memory. The process is a rudimentary one, consisting
of POKEing the decimal equivalents of the 6502 machine language instructions. To
get the instructions in decimal, write your program in 6502 assembly language
(reference manuals are listed in Appendix D), hand assemble it into hexadecimal, and
then convert the hexadecimal codes to decimal. Commodore’s Terminal Interface
Monitor stores the hexadecimal codes directly. However, with the Monitor you must
load the assembly language routine separately from the BASIC program, whereas by
POKEing you can load the assembly language routine as part of executing the main pro-
gram written in BASIC. DATA statements are used to define the machine language
codes, which can be subsequently READ into the program and passed to a POKE loop.

Control is transferred to an assembly language program in one of two ways: the
SYS or the USR function, which are more or less interchangeable. SYS is geared to
turning control over to an assembly language program. USR is a true function reference
that allows a value to be sent to the called assembly language routine and a value
returned by it to the main program.

The assembly language program must return control to BASIC via a Return-
from-Subroutine (RTS) assembly language instruction.

SYS

SYS is a system function that transfers program control to an independent sub-
system.

Format:
SYS(address)

where:

address is a numeric constant, variable, or expression representing the starting
address at which execution of the subsystem is to begin. The
value must be in the range O < address < 65535.

Unlike other functions, SYS can be specified alone in a direct or program state-
ment.

Example:

iy}

Re=1¢

o}

260 . In immediate mode transfer control of the system to the 6402 assembly
language program beginning at memory location 826
(the 2nd cassette buffer)

55 SYS{826) Same as above but executed in program mode. On return, execution
proceeds with the first statement following the SYS statement
128 SYS(A+14) Transfer control of the system to the computer address A+14

SYS is the assembly language subroutine equivalent of GOSUB, but with the
important difference that the safeguards built in to CBM BASIC to protect the system
from user program errors are no longer operable. The system will tend to crash even

Chapter 7: System Information 353

more frequently while debugging assembly language programs than it does debugging
BASIC programs.

Use the RTS assembly language instruction to return to BASIC.

Values can be passed between the BASIC program and the SYS subroutine using
PEEKs and POKEs.

USR

USR is a system function that passes a parameter to a user-written assembly
language subroutine whose address is contained in memory locations 1 and 2 and
fetches a return parameter from the subroutine.

Format:
USR(datan)
where:
datan is the numeric parameter value passed to the subroutine
Example:
U Displays in immediate mode the wvalue returned by the USR
subroutine when passed a value of 60
185 A=USROER) Same as above but in program mode
218 IF USECH»C4 GOTO S8
S10 SM=USROHAI USSR, d0+50RCY 1+

Before making a USR reference, the beginning address of the assembly
language subroutine must be placed into memory locations 1 and 2. For example, if
the subroutine is located in the cassette #2 area, you would include the instructions:

1@ POKE 1.58 Low High

20 POKE 2.3 826,7=033A,5=3A,=58;7 and 03,5=3

The parameter value is passed to the USR subroutine in system locations that
function as a floating point accumulator (FAC) for all functions. The FAC resides in
six bytes, from memory locations 94 to 99 (SE -63). The FAC has the following for-
mat:

Memory location: 94 a5 96 97 a8 99 FAC
Floating
Fraction Point

pry

| Sign
Exponent t
0 = positive

-1 = negative

Like floating variables, the exponent is stored in excess 128 format and the frac-
tion is normalized with the high-order bit of byte 95 (the high-order byte of the fraction)
set to 1. The difference between this format and the variable format is that the high-
drder 1 bit is present in byte 95 of the FAC. An extra byte (99) is used to hold the sign of
the fraction. (This is done for ease of manipulation by the functions that use the FAC.)

354 PET/CBM Personal Computer Guide

The USR subroutine must fetch the value passed to it from the FAC locations.
It must deposit the value being returned into the FAC before terminating. If the USR
subroutine does not alter the FAC, then the same value is returned to the program as
was passed from it.

RANDOM ACCESS FILES

Random access files are created by directly addressing diskette data blocks and
memory buffers.

Diskette data blocks each occupy a single sector. Random access files directly
address diskette data blocks via their actual track and sector address. Diskette memory
buffers, likewise, are directly addressed and assigned to logical file secondary addresses.
(Recall that each diskette unit has sixteen 256-byte memory buffers.)

Random access files are created by using a number of subroutines that directly
access the diskette surface and memory buffers. These are the same subroutines used to
implement sequential and relative file logic; however, your program creates the field/
record/file structure, whatever it may be.

You should not use random access files uniess you are a very experienced pro-
grammer. You will be working at the same level as the people who designed the sequen-
tial and relative file logic found in standard CBM BASIC. These individuals are profes-
sional system programmers. Unless you are an equally experienced programming pro-
fessional, you are unlikely to have much success with the information presented in this
section.

Diskette random access is programmed using PRINT3# statements with
appropriately coded text strings in their parameter list. The PRINT # statements
access the command channel, via secondary address 15. Random access logical files
are opened with specific diskette memory buffers assigned to each logical file via its sec-
ondary address. The PRINT4 statement parameter list uses the secondary address to
identify logical files and assigned buffers.

The following standard OPEN statement format is used when opening a random
access logical file:

100 OPEN I dev,sa,” #[bul”

where:
If is the logical file number specified in the command channel OPEN statement
dev is the device number {usually 8)
sa is the secondary address, which should have a value between 2 and 14
bu, if present, is the buffer number allocated to the specified secondary address. There are

sixten 256-byte buffers; the first three buffers are used by the disk operating
system. Buffer numbers 3 through 15 are therefore available. If bu is not specified,
then the next available buffer is assigned to the secondary address
You can execute a GET# statement immediately after opening a random access
file in order to determine the assigned buffer number. However, the GET3 statement
must be executed before any other input or output statement accesses the logical file.
Here is an example program:
< PEM ASSIGN BUFFER S TO SECOMDARY ADIRESS 4. USED BY LOGICAL FILE z
1@ OFEM 2.8.4, "#5"
2B PRINT DS$:REM CHECK I/0 OFERATICON STATUS

36 GET#2. A% FRINT A A$) REM DISPLAY THE BUFFER NUMEER TO CHECK OFERATION
43 FRINTDS$:REM RECHECE 1.0 STRTUS

S8 CLOSE &

@ STOF

Chapter 7: System Information 355

Random access file commands are subsequently issued using PRINT3# statements
with the following general format:

10 OPEN 1£,8,15
20 PRINT 3 If, “‘parameter”’

parameter identifies the random access file operation. parameter has two parts: a
command and a parameter list. The command has a long form which must end with a
colon, or a short form, in which case the parameter list is assumed to begin at the fourth
character position of the string. Parameters can be separated by comma, space or skip
characters. The following abbreviations are used to describe parameters:

sa The secondary address specified in the data logical file OPEN
statement

dr The diskette drive number (O or 1)

t The diskette track humber

s The sector number within the selected track

p The buffer pointer, or character position selector, which may
have a value between O and 255

adl The low-order byte of a memory address

adh The high-order byte of a memory address

nc Number of characters. This number must be between 1 and 34

data A data string with nc characters

adl, adh and nc must be specified as parameters of CHRS functions. For example,
if adl has the value 123, it must be specified as CHR$(123).

Block Read

This statment reads any diskette sector into a buffer. The BLOCK READ state-
ment has the following format:

PRINT 3 if, “BLOCK-READ:sa.dr.t,;s"”
PRINT # If, *’'B-Rsa,dr.t,s"’

The following example opens logical file 2, assigning buffer 5 to secondary address
4, then reads sector 0 of track 18 on drive 1 into buffer 5:

3 REM OFEM LOGICAL FILE 2. ASSIGHING BUFFER S TO SECOMDARY ADDRESS 4
COFEH: o, RS
FEM REAL CTOR @ OF TRACK 1& OW DRIYE ! INTC EBUFFER 3
OFEM 15.8.15
FRIMT#15, "E-F4.1.15,@8"
FEM DISFLAY THE BUFFER COMTEH
REM DISFLAY 2568 EYTE BUFFER HE
FRINT""
FOR I=1 T &

cOR J=1 7O

TO FROWE THAT DATR WAS FETCHED
F 32 HUMEERS FEE ROW

356 PET/CBM Personal Computer Guide

Block Write

This statement writes the contents of a buffer to a specified sector. It has the
following format:

PRINT # If,"'BLOCK-WRITE:sa.dr.t,s”
or PRINT# If,"B-Wsa,dr.t,s"”

The following statements open logical file 2, assigning buffer 8 to secondary
address 7. The contents of buffer 8 are written to sector 10 of track 35 on drive 0:

OFEH 2,5.7."#3"
1 OFEN 15 15
REM STARTEMENTS THAT WRITE TO BUFFER 2 MUST FOLLOW HERE
FRINT#1S. "E-WF.8,35.8"
3 CLOSE 2
z2a CLDSE 1S
G STOF

Block Execute

This statement is the same as a BLOCK READ, except that data read from the
sector is assumed to be an assembly language program’s object code. As soon as the pro-
gram is loaded it is executed. The program must end with a Return-from-Subroutine
instruction (RTS). It has the following format:

PRINT 3 If,"BLOCK-EXECUTE:sa,dr,t,s""
or PRINT# If,'"B-Esa.dr.t,s”

Buffer Pointer

This statement moves the pointer from the beginning of the buffer to any
character position within the buffer. It has the following format:
PRINT #: 1f,"BUFFER-POINTER:sa,p"’
or PRINT 3 If,""B-Psa,p”

The statement on line 55, shown below, if added to the BLOCK READ example,
moves the buffer pointer to character 24:

55 PRINT#1S. "B-P4.26"

Block Allocate

This statement updates the Block Availability Map (BAM) to show how the cur-
rent block has been used. The block availability map is written to the diskette when the
logical file is closed. If the requested block (sector) has already been allocated, the error
channel identifies the next available block, while specifying a NO BLOCK error. If no
blocks are available, then 00 is returned for the track and sector parameters. It has the
following format:

PRINT # If,"BLOCK-ALLOCATE:dr.t,s"
or PRINT# If,”B-Adr,ts"

Memory Write

The MEMORY WRITE statement writes data into a diskette buffer. It has the
following format:

PRINT # if,""M-W""adl/adh/nc/data

2o 7 Svstem Information 357

Table 7-2. Starting Address for Model 2040 and Model 8050
256-Byte Diskette Buffers

Buffer Model 2040/8050
No. Hexadecimal Decimal
° 1000 4096
! 1100 4352
2 1200 4608
3 1300 4864
4 2000 8192
5 2100 8448
6 2200 8704
7 2300 8960
8 3000 12288
9 3100 12455
10 3200 12800
I3 3300 13056
12 4000 13312
13 4100 13568
14 4200 13824
15 4300 14080

Diskette memory buffer addresses are summarized in Table 7-2 for the Model
2040 and 8050 diskette drives. Note that buffer addresses are somewhat scattered.

Suppose the four data bytes 32, 0, 17 and 96 are to be written into buffer 2 of a
\Model 2040 diskette drive. From Table 7-2, note that this buffer starting address is
1800, . Therefore the following PRINTH statement is needed:

1
168 PRINT#15, "M-K"CHR$ (08> CHR$ (18> CHR$(32)CHR$ (B)CHR$ (17 >CHR$(96)

Memory Read

This statement allows a byte of data to be read from a diskette buffer. It has the
following format:

PRINT # 1f,”’M-R""adl/adh

The address of the byte to be read is specified by the parameter list using CHR$
functions. The byte itself is then read using a GET3# statement, via the control channel
(15). Subsequently an INPUTH# statement will not execute correctly until a random
access statement other than a MEMORY READ, MEMORY WRITE or MEMORY
EXECUTE has been executed.

For example, the following statements read a data byte from buffer address 1808:

169 PRINT#15, "M-R"CHR$(8)CHR$ (185
116 GET#15.R$

Memory Execute

This statement executes an assembly language subroutine. It has the following

format:
PRINT # If,'"M-E""adl/adh

adl and adh are the decimal low- and high-order halves of the subroutine starting
address in diskette buffer memory. The subroutine which gets executed must end with
the following Return-from-Subroutine instruction:
RTS. $60

358 PET/CBM Personal Computer Guide
Table 7-3. Random Access File User Statements
User Alternate Functi
Designation User Designation unction
u1 UA BLOCK-READ replacement
u2 uB BLOCK-WRITE replacement
u3 uc jump to $1300
ua ub jump to $1303
us UE jump to $13086
us UF jump to $D008
u7 UG jump to $D00B
us UH jump to $D00E
us ul jump to $D0D5
U: uJ power up $E18E
User

There are ten special ‘‘user’ statements. The first two substitute for BLOCK
READ and BLOCK WRITE; seven are JUMP TO subroutines, while the eighth enters
the power-up routine. User statements are summarized in Table 7-3. For U3 through
U9 see the revision 3 memory map given in Appendix F in order to identify the routines

jumped to.

For Ul and U2 use the following format:

PRINT 3 If “Ux;sa,dr.t,s”

x is 1 for Ul or 2 for U2.

	Chapter7.BMP
	Chapter70001.BMP
	Chapter70002.BMP
	Chapter70003.BMP
	Chapter70004.BMP
	Chapter70005.BMP
	Chapter70006.BMP
	Chapter70007.BMP
	Chapter70008.BMP
	Chapter70009.BMP
	Chapter70010.BMP
	Chapter70011.BMP
	Chapter70012.BMP
	Chapter70013.BMP
	Chapter70014.BMP
	Chapter70015.BMP
	Chapter70016.BMP
	Chapter70017.BMP
	Chapter70018.BMP
	Chapter70019.BMP
	Chapter70020.BMP
	Chapter70021.BMP
	Chapter70022.BMP
	Chapter70023.BMP
	Chapter70024.BMP
	Chapter70025.BMP

